Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo...Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.展开更多
Influence of hydrogen attack on mechanical and fatigue properties of 1020, 15CrMo and 2.25Cr-1Mo steels has been studied, which were exposed to gaseous hydrogen at pressure of 18MPa and 300-480℃ for up to 480h. The r...Influence of hydrogen attack on mechanical and fatigue properties of 1020, 15CrMo and 2.25Cr-1Mo steels has been studied, which were exposed to gaseous hydrogen at pressure of 18MPa and 300-480℃ for up to 480h. The results of fatigue test showed that hydrogen attack (HA) resulted in an obvious change in fatigue properties of 1020 and 15CrMo steels, however, 2.25Cr-1Mo steel showed a lower susceptibility to hydrogen attack due to the addition of Cr and Mo. Fatigue crack behaviour for 1020 steel is attributed to hydrogen attack damage and the crack closure induced by the rough cracking surface, which lead to a valley on △Kth~HA% plot. The change in the fatigue behaviour of 15CrMo steel is possibly caused by severe surface decarburization.展开更多
Flat Steel Ribbon Wound Pressure Vessels (FSRWPVs) are used in many important industry areas. There is no such kind of pressure vessel exploding on operation for its reasonable structure design. Many explosion experim...Flat Steel Ribbon Wound Pressure Vessels (FSRWPVs) are used in many important industry areas. There is no such kind of pressure vessel exploding on operation for its reasonable structure design. Many explosion experiments on Flat Steel Ribbon Wound Pressure Vessel showed that their limited load pressure is related to the winding angle of the steel ribbons. FSRWPVs with reasonable winding angle have better security and lower cost. Reasonable angels given at the end of this paper facilitate engineering design.展开更多
Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitiz...Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitizing at 1 150℃ and water quench, deformation 10% and 30% respectively, and then thermal aging at 500℃ for different period of time. The microstructure of the specimens was analyzed in details using transmission electron microscopy (TEM). The micro-hardness test results showed that all the hardness curves of undeformed, 10% pre-deformed and 30% pre-deformed specimens have two micro-hardness peaks with the first peak value corresponding to different thermal aging time of 1 hour, 5 hours and 10 hours, respectively. It was revealed that the hardness curves were influenced by the precipitation of Cu-rich precipitates (CRPs) and carbides, deposition of martensite and work hardening.展开更多
In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of burstin...In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of bursting pressure and modification of Faupel formula, a more precise modified formula is given out according to the experimental data. It is proved to be more accurate after examining other bursting pressure value presented in many references. This bursting formula is very accurate in these experiments using pressure vessels with different diameter and shell thickness. Obviously, this modified bursting formula can be used in mild steel pressure vessels with different diameter and thickness of shell.展开更多
An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical ...An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical (~300 ℃) aqueous environment was given. The mechanisms of SCC of metals under this inclement surrounding were briefly generalized. Herein,some pragmatic solutions to mitigate the SCC susceptibility and retard its propagation were presented. The titanium and cerium-based inhibitors addition countermeasure was highlighted.展开更多
The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental...The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.展开更多
The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nick...The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nickel contents than commercially available one, were heated at 890 ~C for 0.5 h and then water quenched followed by tempering at 0(50 ~C for I0 h and aging at 400 ~C for 1000 h. It was observed that bcc and 9R orthogonal structure, as well as 9R orthogonal and 9R monoclinic structure, coexist in a single Cu-rich nano precipitate. Further analyses pointed out that Cu-rich nano precipitates of bcc structure were not stable, it may preferentially transform to 9R orthogonal structure and then to 9R monoclinic structure. This results showed that the crystal structure evolution of the Cu-rich nano precipitates was complex.展开更多
The welding coarse-grained heat-affected zones(CGHAZs) in the undoped and Ce-doped samples of SA508CL-3 reactor pressure vessel steel were simulated using a Gleeble 1500 D thermomechanical simulator with a peak temp...The welding coarse-grained heat-affected zones(CGHAZs) in the undoped and Ce-doped samples of SA508CL-3 reactor pressure vessel steel were simulated using a Gleeble 1500 D thermomechanical simulator with a peak temperature of 1320 oC at the heat inputs of 30, 50 and 100 kJ /cm, respectively. The ductile-to-brittle transition temperature(DBTT) of the simulated CGHAZs was evaluated along with microstructural and microchemical characterizations. The results indicated that Ce could substantially lower the DBTT of the CGHAZs by its microstructural and microchemical effects. After the thermal cycling of welding, the microstructure in the Ce-doped samples was apparently finer than that in the undoped samples, regardless of the lath bainite obtained at the heat inputs of 30 and 50 kJ /cm or the granular bainite acquired at the heat input of 100 kJ /cm, leading to lower DBTTs for the Ce-doped samples. Moreover, grain boundary segregation of Ce occurred apparently in the Ce-doped samples and exhibited a non-equilibrium characteristic. The segregation of Ce could play an important role in lowering the DBTT of CGHAZs or toughening the CGHAZs.展开更多
The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into ...The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into the steel wall also decreases with time due to helium-3 decay and diffusion in and out of the wall of tritium.Tritium and helium-3 in the steel wall will cause hydrogen and helium embrittlement of the wall material,respectively,and thereby change the carrying capacity of the vessel.Taking contemporarily both decay and permeation of tritium within the vessel and decay and diffusion of tritium having permeated into the wall into consideration,the governing equations of tritium and helium-3 contents in the wall were established and solved,and relevant formulas were deduced.Through analytical calculations,curves of tritium and helium-3 contents versus radius and time were theoretically plotted,the contents spatio-temporal distributions laws were obtained,and a law about helium-3 contents distribution in steel wall of a spherical pressure vessel was discovered which was called the law of double helium-3 content.展开更多
Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6...Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6× 10-5 s-1) and different temperatures (500 and 550 ℃) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress-strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10-5 s-1 and 500 ℃ possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 ℃ serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.展开更多
基金supported by the National Key R&D Program of China (No. 2019YFB1900901)the Fundamental Research Funds for the Central Universities (No. 2021MS032)
文摘Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.
文摘Influence of hydrogen attack on mechanical and fatigue properties of 1020, 15CrMo and 2.25Cr-1Mo steels has been studied, which were exposed to gaseous hydrogen at pressure of 18MPa and 300-480℃ for up to 480h. The results of fatigue test showed that hydrogen attack (HA) resulted in an obvious change in fatigue properties of 1020 and 15CrMo steels, however, 2.25Cr-1Mo steel showed a lower susceptibility to hydrogen attack due to the addition of Cr and Mo. Fatigue crack behaviour for 1020 steel is attributed to hydrogen attack damage and the crack closure induced by the rough cracking surface, which lead to a valley on △Kth~HA% plot. The change in the fatigue behaviour of 15CrMo steel is possibly caused by severe surface decarburization.
文摘Flat Steel Ribbon Wound Pressure Vessels (FSRWPVs) are used in many important industry areas. There is no such kind of pressure vessel exploding on operation for its reasonable structure design. Many explosion experiments on Flat Steel Ribbon Wound Pressure Vessel showed that their limited load pressure is related to the winding angle of the steel ribbons. FSRWPVs with reasonable winding angle have better security and lower cost. Reasonable angels given at the end of this paper facilitate engineering design.
文摘Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitizing at 1 150℃ and water quench, deformation 10% and 30% respectively, and then thermal aging at 500℃ for different period of time. The microstructure of the specimens was analyzed in details using transmission electron microscopy (TEM). The micro-hardness test results showed that all the hardness curves of undeformed, 10% pre-deformed and 30% pre-deformed specimens have two micro-hardness peaks with the first peak value corresponding to different thermal aging time of 1 hour, 5 hours and 10 hours, respectively. It was revealed that the hardness curves were influenced by the precipitation of Cu-rich precipitates (CRPs) and carbides, deposition of martensite and work hardening.
文摘In order to get more precise bursting pressure formula of mild steel, hundreds of bursting experiments of mild steel pressure vessels such as Q235(Gr.D) and 20R(1020) are done. Based on statistical data of bursting pressure and modification of Faupel formula, a more precise modified formula is given out according to the experimental data. It is proved to be more accurate after examining other bursting pressure value presented in many references. This bursting formula is very accurate in these experiments using pressure vessels with different diameter and shell thickness. Obviously, this modified bursting formula can be used in mild steel pressure vessels with different diameter and thickness of shell.
文摘An overview of a severe kind of environmentally-assisted cracking-stress corrosion cracking (SCC) of pressure vessel steel (PVS),such as stainless steel 304, alloy 600,690 and other nickel-based alloys in subcritical (~300 ℃) aqueous environment was given. The mechanisms of SCC of metals under this inclement surrounding were briefly generalized. Herein,some pragmatic solutions to mitigate the SCC susceptibility and retard its propagation were presented. The titanium and cerium-based inhibitors addition countermeasure was highlighted.
基金Project(CDJZR14130006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy.
基金financially supported by the National Basic Research Program of China(No.2011CB610503)National Natural Science Foundation of China(No.50931003)Ministry of Major Subject of Shanghai(No.S30107)
文摘The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nickel contents than commercially available one, were heated at 890 ~C for 0.5 h and then water quenched followed by tempering at 0(50 ~C for I0 h and aging at 400 ~C for 1000 h. It was observed that bcc and 9R orthogonal structure, as well as 9R orthogonal and 9R monoclinic structure, coexist in a single Cu-rich nano precipitate. Further analyses pointed out that Cu-rich nano precipitates of bcc structure were not stable, it may preferentially transform to 9R orthogonal structure and then to 9R monoclinic structure. This results showed that the crystal structure evolution of the Cu-rich nano precipitates was complex.
基金supported by the National Natural Science Foundation of China(51071060)
文摘The welding coarse-grained heat-affected zones(CGHAZs) in the undoped and Ce-doped samples of SA508CL-3 reactor pressure vessel steel were simulated using a Gleeble 1500 D thermomechanical simulator with a peak temperature of 1320 oC at the heat inputs of 30, 50 and 100 kJ /cm, respectively. The ductile-to-brittle transition temperature(DBTT) of the simulated CGHAZs was evaluated along with microstructural and microchemical characterizations. The results indicated that Ce could substantially lower the DBTT of the CGHAZs by its microstructural and microchemical effects. After the thermal cycling of welding, the microstructure in the Ce-doped samples was apparently finer than that in the undoped samples, regardless of the lath bainite obtained at the heat inputs of 30 and 50 kJ /cm or the granular bainite acquired at the heat input of 100 kJ /cm, leading to lower DBTTs for the Ce-doped samples. Moreover, grain boundary segregation of Ce occurred apparently in the Ce-doped samples and exhibited a non-equilibrium characteristic. The segregation of Ce could play an important role in lowering the DBTT of CGHAZs or toughening the CGHAZs.
基金supported by Science and Technology Development Fundation of Academy of Engineering Physics (Grant No2008A0301010)
文摘The tritium quantity stored in a steel pressure vessel decreases with time because of helium-3 decay and permeation of tritium into the steel wall of the pressure vessel.Meanwhile,the tritium quantity permeating into the steel wall also decreases with time due to helium-3 decay and diffusion in and out of the wall of tritium.Tritium and helium-3 in the steel wall will cause hydrogen and helium embrittlement of the wall material,respectively,and thereby change the carrying capacity of the vessel.Taking contemporarily both decay and permeation of tritium within the vessel and decay and diffusion of tritium having permeated into the wall into consideration,the governing equations of tritium and helium-3 contents in the wall were established and solved,and relevant formulas were deduced.Through analytical calculations,curves of tritium and helium-3 contents versus radius and time were theoretically plotted,the contents spatio-temporal distributions laws were obtained,and a law about helium-3 contents distribution in steel wall of a spherical pressure vessel was discovered which was called the law of double helium-3 content.
文摘Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1× 10-5 s-1 and 6.6× 10-5 s-1) and different temperatures (500 and 550 ℃) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress-strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10-5 s-1 and 500 ℃ possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 ℃ serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.