Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, h...Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
In this paper,a theoretical solution of vertical buckling is proposed with regard to the typical initial imperfection cases of submarine pipelines.Analytical tools are applied to predicting the occurrence and conseque...In this paper,a theoretical solution of vertical buckling is proposed with regard to the typical initial imperfection cases of submarine pipelines.Analytical tools are applied to predicting the occurrence and consequence of inservice buckling of a buried heated pipeline in Bohai Gulf.An evaluation is performed to ensure the pipeline structural integrity during operation under loading conditions.Different protection measures are proposed and their validities are analyzed.Analyses show that for the same magnitude of initial imperfection,the upheaval buckling of pipeline with isolated prop model is the most likely to occur.The empathetic model represents a special sub-case of continuous prop model,and the calculated buckle temperature is between the first stage and the second stage of post-upheaval buckling of continuous prop model.And the larger the initial imperfection,the less the axial force required for the upheaval buckling.Meanwhile,it can be seen that a peak point appears on the curves of temperature difference against buckling amplitude for small initial imperfection.Besides,trenching-burial is one kind of protection measures preventing the pipeline from thermal upheaval.The covered depth-to-diameter ratio depends on the design conditions and subsoil properties.For the given pipeline in this paper,the covered depth-to-diameter ratio is recommended to be 5.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-ove...For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station.展开更多
文摘Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
基金Supported by National Natural Science Foundation of China (No.40776055)
文摘In this paper,a theoretical solution of vertical buckling is proposed with regard to the typical initial imperfection cases of submarine pipelines.Analytical tools are applied to predicting the occurrence and consequence of inservice buckling of a buried heated pipeline in Bohai Gulf.An evaluation is performed to ensure the pipeline structural integrity during operation under loading conditions.Different protection measures are proposed and their validities are analyzed.Analyses show that for the same magnitude of initial imperfection,the upheaval buckling of pipeline with isolated prop model is the most likely to occur.The empathetic model represents a special sub-case of continuous prop model,and the calculated buckle temperature is between the first stage and the second stage of post-upheaval buckling of continuous prop model.And the larger the initial imperfection,the less the axial force required for the upheaval buckling.Meanwhile,it can be seen that a peak point appears on the curves of temperature difference against buckling amplitude for small initial imperfection.Besides,trenching-burial is one kind of protection measures preventing the pipeline from thermal upheaval.The covered depth-to-diameter ratio depends on the design conditions and subsoil properties.For the given pipeline in this paper,the covered depth-to-diameter ratio is recommended to be 5.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
文摘For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station.