This work studies the fabrication and pressureless sintering of silicon carbide(SiC)refractories.SiC particles were adopted as aggregates,introducing different amounts(20%,30%,40%,50%,and 60%,by mass)of submicron SiC ...This work studies the fabrication and pressureless sintering of silicon carbide(SiC)refractories.SiC particles were adopted as aggregates,introducing different amounts(20%,30%,40%,50%,and 60%,by mass)of submicron SiC powder,adding resin as the binder and the carbon source,and B4C as the sintering aid.It is found that when the mass ratio of B4C to the submicron SiC powder is 3%,the optimal sintering can be obtained.With the increase of the submicron powder addition,the sintering linear shrinkage increases and the mechanical properties enhance.The optimal sintering temperature is 2050-2100℃.展开更多
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a se...In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.展开更多
Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure,...Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.展开更多
Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner c...Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner castables to investigate their influences on the flow ability, linear change on heating, bulk density, apparent porosity, cold strength, hot modulus of rupture, therm, al shock resistance, slag resistance, oxidation resistance as well as wear resistance of Al2O3 - SiC - C iron runner castables. The results show that ( 1 ) compared with the specimens with fused dense corundum, the specimens with dense sintered alumina have equivalent installation property, slag resistance and oxidation resistance, equivalent or even higher cold modulus of rupture, cold crushing strength and hot modulus of rupture, exhibiting better thermal shock resistance and cold wear resistance ; (2) adopting bimodal alumina micropowder LISAL22RABL as well as water reducers ZX2 and ZD2 can well reduce the water requirement of silica fume free castables, solving the problem of deteriorated flow ability resulted from the lack of silica fume; since the lack of silica fume avoids the formation of low melting point liquid, the hot modulus of rupture and the thermal shock resistance of the silica fume free castables are both better than those of the silica fume containing castables ; (3) the density of the castable specimens with dense sintered alumina is 4% -6% lower than that of the castable specimens with Jhsed dense corundum so the refractories consumption of one iron runner reduces by 5% by using the tastable with dense sintered alumina, which obviously reduces the cost of refractories.展开更多
Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture beha...Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture behavior of the liquid phase sintered (LPS) SiC composites were investigated. The results show that the served BAS effectively promotes the densification of SiC composites. The flexural strength and fracture toughness of the SiC composites can reach a maximum value of 454 MPa and 5.1 MPa·m1/2, respectively, for 40% (w/w) BAS/SiC composites. SiC grain pullout, crack deflection, and crack bridging were main toughening mechanisms for the sintered composites.展开更多
The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condens...The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condensation zone formed by vaporized SiC; and the oxidation zone that showed the characteristics of thermal oxidation. The ablation depth and oxidation range increase linearly with fluence and pulses within 0.5-4 J/cm2, but the normalized ablation efficiency is constant (3.60± 0.60 μm · mm2/J). The theoretical photochemical ablation depth supplies 25% of the total depth at 1 J/cm2 but decreases to 16% at 4 J/cm2. The ablation is dominated by the photothermal effect and conforms to the thermal evaporation mechanism.展开更多
SiC porous ceramics were prepared at 1 400 ℃ for4 h with crystalline silicon cutting waste and activated carbon as main starting materials and NH4HCO3 as the pore-forming agent. Effects of NH4HCO3 additions( 0,20%,30...SiC porous ceramics were prepared at 1 400 ℃ for4 h with crystalline silicon cutting waste and activated carbon as main starting materials and NH4HCO3 as the pore-forming agent. Effects of NH4HCO3 additions( 0,20%,30%,40%,by mass) on the phase composition,microstructure,sintering properties,cold compressive strength and thermal shock resistance of as-prepared Si C porous ceramics were investigated. The results show that:( 1) addition of NH4HCO3 remarkably influences the apparent porosity and cold compressive strength of specimens. The apparent porosity achieves its maximum value( 63. 40%) when 40% NH4HCO3 is added,while the minimum cold compressive strength is 4. 77 MPa;( 2) the specimen with 40% NH4HCO3 has the best thermal shock resistance. The thermal cycling times between1 000 ℃ to room temperature reach 62;( 3) the addition of NH4HCO3 does not remarkably affect the phase composition of the specimens;( 4) the specimens include a large number of SiC particles and a small amount of SiC whiskers.展开更多
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an ine...The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.展开更多
TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and Al2O3 were added as sintering additiv...TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and Al2O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m1/2) values of Si3N4-based ceramics could be achieved at 1550℃. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.展开更多
Polycrystalline bulk Ti 3SiC 2 material with a high purity and density was fabricated by spark plasma sintering from the elemental powder mixture with starting composition of Ti 3Si 1-x Al xC 2,where x=0.05-0...Polycrystalline bulk Ti 3SiC 2 material with a high purity and density was fabricated by spark plasma sintering from the elemental powder mixture with starting composition of Ti 3Si 1-x Al xC 2,where x=0.05-0.2.X ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples show that a proper addition of aluminum promotes the formation,and accelerates the crystal growth rate of Ti 3SiC 2,consequently results in a high purity of the prepared samples.The synthesized Ti 3SiC 2 is in plane shape with a size of about 10-25μm in the elongated dimension.Solid solution of aluminum decreases the thermal stability of Ti 3SiC 2,and lowers the temperature of Ti 3SiC 2 decomposeing to be 1300 ℃.展开更多
By the method of TG-DSC(thermo gravimetric analysis -differential scanning calorimeter) , the chemical reactions of Fe-Si3 N4 bonded SiC during the sintering process in nitriding furnace have been studied. Analyses ha...By the method of TG-DSC(thermo gravimetric analysis -differential scanning calorimeter) , the chemical reactions of Fe-Si3 N4 bonded SiC during the sintering process in nitriding furnace have been studied. Analyses have been conducted on the reason of disintegration of specimens when ferro-silicon was added greater than 15% and on the method to reduce damage. The result indicated that there are mainly three important reactions occurred during the nitriding process of samples, they are: the oxidation of carbon, the melting of ferro-silicon and the nitriding of ferro -silicon. Controlling the balance of partial pressure of N2 and slowing down the rate of temperature rising can reduce the disintegration of samples .展开更多
文摘This work studies the fabrication and pressureless sintering of silicon carbide(SiC)refractories.SiC particles were adopted as aggregates,introducing different amounts(20%,30%,40%,50%,and 60%,by mass)of submicron SiC powder,adding resin as the binder and the carbon source,and B4C as the sintering aid.It is found that when the mass ratio of B4C to the submicron SiC powder is 3%,the optimal sintering can be obtained.With the increase of the submicron powder addition,the sintering linear shrinkage increases and the mechanical properties enhance.The optimal sintering temperature is 2050-2100℃.
基金financially supported by the International S&T Cooperation Program of China(No.2010DFR50360)
文摘In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110006110025)the National Natural Science Foundation of China(No.U1134102)
文摘Solid-phase-sintered Si C-based composites with short carbon fibers(Csf/SSi C) in concentrations ranging from 0 to 10wt% were prepared by pressureless sintering at 2100°C. The phase composition, microstructure, density, and flexural strength of the composites with different Csf contents were investigated. SEM micrographs showed that the Csf distributed in the SSi C matrix homogeneously with some gaps at the fiber/matrix interfaces. The densities of the composites decreased with increasing Csf content. However, the bending strength first increased and then decreased with increasing Csf content, reaching a maximum value of 390 MPa at a Csf content of 5wt%, which was 60 MPa higher than that of SSi C because of the pull-out strengthening mechanism. Notably, Csf was graphitized and damaged during the sintering process because of the high temperature and reaction with boron derived from the sintering additive B4C; this graphitization degraded the fiber strengthening effect.
文摘Three different kinds of corundum aggregates-tabular sintered alumina, dense sintered alumina, and fused dense corundum-were introduced into the silica fume .free or silica fume containing Al2O3 -SiC - C iron runner castables to investigate their influences on the flow ability, linear change on heating, bulk density, apparent porosity, cold strength, hot modulus of rupture, therm, al shock resistance, slag resistance, oxidation resistance as well as wear resistance of Al2O3 - SiC - C iron runner castables. The results show that ( 1 ) compared with the specimens with fused dense corundum, the specimens with dense sintered alumina have equivalent installation property, slag resistance and oxidation resistance, equivalent or even higher cold modulus of rupture, cold crushing strength and hot modulus of rupture, exhibiting better thermal shock resistance and cold wear resistance ; (2) adopting bimodal alumina micropowder LISAL22RABL as well as water reducers ZX2 and ZD2 can well reduce the water requirement of silica fume free castables, solving the problem of deteriorated flow ability resulted from the lack of silica fume; since the lack of silica fume avoids the formation of low melting point liquid, the hot modulus of rupture and the thermal shock resistance of the silica fume free castables are both better than those of the silica fume containing castables ; (3) the density of the castable specimens with dense sintered alumina is 4% -6% lower than that of the castable specimens with Jhsed dense corundum so the refractories consumption of one iron runner reduces by 5% by using the tastable with dense sintered alumina, which obviously reduces the cost of refractories.
文摘Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture behavior of the liquid phase sintered (LPS) SiC composites were investigated. The results show that the served BAS effectively promotes the densification of SiC composites. The flexural strength and fracture toughness of the SiC composites can reach a maximum value of 454 MPa and 5.1 MPa·m1/2, respectively, for 40% (w/w) BAS/SiC composites. SiC grain pullout, crack deflection, and crack bridging were main toughening mechanisms for the sintered composites.
基金supported by the National Natural Science Foundation of China(No.61705235)the Innovation Project of the Academy of Opto-Electronics,Chinese Academy of Sciences(No.Y70B03A12Y)
文摘The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condensation zone formed by vaporized SiC; and the oxidation zone that showed the characteristics of thermal oxidation. The ablation depth and oxidation range increase linearly with fluence and pulses within 0.5-4 J/cm2, but the normalized ablation efficiency is constant (3.60± 0.60 μm · mm2/J). The theoretical photochemical ablation depth supplies 25% of the total depth at 1 J/cm2 but decreases to 16% at 4 J/cm2. The ablation is dominated by the photothermal effect and conforms to the thermal evaporation mechanism.
文摘SiC porous ceramics were prepared at 1 400 ℃ for4 h with crystalline silicon cutting waste and activated carbon as main starting materials and NH4HCO3 as the pore-forming agent. Effects of NH4HCO3 additions( 0,20%,30%,40%,by mass) on the phase composition,microstructure,sintering properties,cold compressive strength and thermal shock resistance of as-prepared Si C porous ceramics were investigated. The results show that:( 1) addition of NH4HCO3 remarkably influences the apparent porosity and cold compressive strength of specimens. The apparent porosity achieves its maximum value( 63. 40%) when 40% NH4HCO3 is added,while the minimum cold compressive strength is 4. 77 MPa;( 2) the specimen with 40% NH4HCO3 has the best thermal shock resistance. The thermal cycling times between1 000 ℃ to room temperature reach 62;( 3) the addition of NH4HCO3 does not remarkably affect the phase composition of the specimens;( 4) the specimens include a large number of SiC particles and a small amount of SiC whiskers.
文摘The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.
文摘TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and Al2O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m1/2) values of Si3N4-based ceramics could be achieved at 1550℃. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.
文摘Polycrystalline bulk Ti 3SiC 2 material with a high purity and density was fabricated by spark plasma sintering from the elemental powder mixture with starting composition of Ti 3Si 1-x Al xC 2,where x=0.05-0.2.X ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples show that a proper addition of aluminum promotes the formation,and accelerates the crystal growth rate of Ti 3SiC 2,consequently results in a high purity of the prepared samples.The synthesized Ti 3SiC 2 is in plane shape with a size of about 10-25μm in the elongated dimension.Solid solution of aluminum decreases the thermal stability of Ti 3SiC 2,and lowers the temperature of Ti 3SiC 2 decomposeing to be 1300 ℃.
文摘By the method of TG-DSC(thermo gravimetric analysis -differential scanning calorimeter) , the chemical reactions of Fe-Si3 N4 bonded SiC during the sintering process in nitriding furnace have been studied. Analyses have been conducted on the reason of disintegration of specimens when ferro-silicon was added greater than 15% and on the method to reduce damage. The result indicated that there are mainly three important reactions occurred during the nitriding process of samples, they are: the oxidation of carbon, the melting of ferro-silicon and the nitriding of ferro -silicon. Controlling the balance of partial pressure of N2 and slowing down the rate of temperature rising can reduce the disintegration of samples .