A superconducting transformer was designed for the correction coils (CC) conductor test facility in the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP), for validating the CC conductor of the ...A superconducting transformer was designed for the correction coils (CC) conductor test facility in the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP), for validating the CC conductor of the international thermonuclear experimental reactor (ITER). The maximum current of the superconducting transformer is 50 kA. The conductor samples could be tested at different magnetic fields and cooling conditions similar to the operational condition of ITER. During normal operation, the primary and secondary windings of the superconducting transformer will withstand the high electromagnetic (EM) stress caused by the high current. Integrated analysis of EM and structural fields can ensure these components not to encounter any over-stress problem under normal operational condition. A coupled model is proposed to combine the EM and structural analyses. A detailed finite element (FE) model and EM-structural coupled model are presented and the numerical results show that the stress of the transformer windings is within the allowable limits.展开更多
The 2011 Tohoku-oki earthquake,occurred on 11 March,2011,is a great earthquake with a seismic magnitude Mw9. 1,before which an Mw7. 5 earthquake occurred. Focusing on this great earthquake event,we applied Hilbert-Hua...The 2011 Tohoku-oki earthquake,occurred on 11 March,2011,is a great earthquake with a seismic magnitude Mw9. 1,before which an Mw7. 5 earthquake occurred. Focusing on this great earthquake event,we applied Hilbert-Huang transform( HHT) analysis method to the one-second interval records at seven superconducting gravimeter( SG) stations and seven broadband seismic( BS) stations to carry out spectrum analysis and compute the energy-frequency-time distribution. Tidal effects are removed from SG data by T-soft software before the data series are transformed by HHT method. Based on HHT spectra and the marginal spectra from the records at selected seven SG stations and seven BS stations we found anomalous signals in terms of energy. The dominant frequencies of the anomalous signals are respectively about 0. 13 Hz in SG records and 0. 2 Hz in seismic data,and the anomalous signals occurred one week or two to three days prior to the event. Taking into account that in this period no typhoon event occurred,we may conclude that these anomalous signals might be related to the great earthquake event.展开更多
A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersio...A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-T <sub>c</sub> superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates ?· (the ratio of hopping parameters) and n (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.展开更多
By means of X-ray diffraction investigations and electric resistivity measurements the tempera- ture dependence of phase structure and supercon- ductivity in YBa_2Cu_3O_(7_x) over the temperature range of 20℃-950℃ h...By means of X-ray diffraction investigations and electric resistivity measurements the tempera- ture dependence of phase structure and supercon- ductivity in YBa_2Cu_3O_(7_x) over the temperature range of 20℃-950℃ have been studied.The lattice parameters a,b and c as well as conductivity as a function of annealing temperatures can be roughly divided into three zones which are superconductive orthorhombic structure 1(a<b(?)c/3) at 20℃-500℃,normal conductive orthorhombic structure 2(a<b<c/3)from 550℃ to about 750℃ and semiconductive-like tetragonal structure (a=b<c/3)from about 800℃ to 950℃.However, the boundaries of the three zones is not much distinctive because there is a continuous transi- tion from the orthorhombic to tetragonal struc- ture.Furthermore,the processes of orthorhom- bic-tetragonal transition in the range of 350℃-950℃ are not only continuous but also reversible.The isothermal transition of orthorhombic 2 to orthorhombic 1 occurs at 350℃-500℃,while the maximum rate of transition and high T_c superconductivity can be obtained at about 460℃.This process of isothermal transition depends on the ordering of oxygen atoms or vacancies and the thermodynamic equilibrium to allow the oxygen diffusion.展开更多
The generated heat by the superconducting windings and the other parts such as current leads in transformer increases the hottest point temperature(HPT)and causes the high temperature superconducting(HTS)windings to q...The generated heat by the superconducting windings and the other parts such as current leads in transformer increases the hottest point temperature(HPT)and causes the high temperature superconducting(HTS)windings to quench.Due to the properties of superconducting windings,reducing the HPT is of critical importance for the stable operation of the HTS transformer.The cooling system of HTS transformers,not only provides the cryogenic temperature for the proper operation of the superconductors but also is responsible for dissipating the generated heat by the windings.In this paper,the effect of the angle of inlet pipes in cooling system was investigated.This was a simple and effective solution which increases the heat transfer in liquid nitrogen.It was shown that inlet angle has a significant effect on the flow turbulence and the windings temperature.The Perlator is used as a lattice sheet which is installed inside the inlet valve and increases the turbulence of inlet flow of liquid nitrogen to increase heat transfer and reduce HPT.The thermal analysis is obtained by finite element method using ANSYS Fluent software.The influence of changing the inlet pipe angle and different structure of Perlator on heat transfer was investigated.展开更多
A 630-kVA 10.5 kV/0.4 kV three-phase high temperature superconducting(HTS)power transformer was successfully developed and tested in a live grid.The windings were wound by hermetic stainless steelreinforced multi-fila...A 630-kVA 10.5 kV/0.4 kV three-phase high temperature superconducting(HTS)power transformer was successfully developed and tested in a live grid.The windings were wound by hermetic stainless steelreinforced multi-filamentary Bi2223/Ag tapes.The structures of primary windings are solenoid with insulation and cooling path among layers,and those of secondary windings consist of double-pancakes connected in parallel.Toroidal cryostat is made from electrical insulating glass fiber reinforced plastics(GFRP)materials with room temperature bore for commercial amorphous alloy core with five limbs.Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature.An insulation technology of double-half wrapping up the Bi2223/Ag tape with Kapton film is used by a winding machine developed by the authors.Fundamental characteristics of the transformer are obtained by standard short-circuit and no-load tests,and it is shown that the transformer meets operating requirements in a live grid.展开更多
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (No.Yz200726)
文摘A superconducting transformer was designed for the correction coils (CC) conductor test facility in the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP), for validating the CC conductor of the international thermonuclear experimental reactor (ITER). The maximum current of the superconducting transformer is 50 kA. The conductor samples could be tested at different magnetic fields and cooling conditions similar to the operational condition of ITER. During normal operation, the primary and secondary windings of the superconducting transformer will withstand the high electromagnetic (EM) stress caused by the high current. Integrated analysis of EM and structural fields can ensure these components not to encounter any over-stress problem under normal operational condition. A coupled model is proposed to combine the EM and structural analyses. A detailed finite element (FE) model and EM-structural coupled model are presented and the numerical results show that the stress of the transformer windings is within the allowable limits.
基金supported by National 973 Project China(2013CB733305)NSFC(41174011,41128003,41210006,41021061,40974015)
文摘The 2011 Tohoku-oki earthquake,occurred on 11 March,2011,is a great earthquake with a seismic magnitude Mw9. 1,before which an Mw7. 5 earthquake occurred. Focusing on this great earthquake event,we applied Hilbert-Huang transform( HHT) analysis method to the one-second interval records at seven superconducting gravimeter( SG) stations and seven broadband seismic( BS) stations to carry out spectrum analysis and compute the energy-frequency-time distribution. Tidal effects are removed from SG data by T-soft software before the data series are transformed by HHT method. Based on HHT spectra and the marginal spectra from the records at selected seven SG stations and seven BS stations we found anomalous signals in terms of energy. The dominant frequencies of the anomalous signals are respectively about 0. 13 Hz in SG records and 0. 2 Hz in seismic data,and the anomalous signals occurred one week or two to three days prior to the event. Taking into account that in this period no typhoon event occurred,we may conclude that these anomalous signals might be related to the great earthquake event.
文摘A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-T <sub>c</sub> superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates ?· (the ratio of hopping parameters) and n (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.
文摘By means of X-ray diffraction investigations and electric resistivity measurements the tempera- ture dependence of phase structure and supercon- ductivity in YBa_2Cu_3O_(7_x) over the temperature range of 20℃-950℃ have been studied.The lattice parameters a,b and c as well as conductivity as a function of annealing temperatures can be roughly divided into three zones which are superconductive orthorhombic structure 1(a<b(?)c/3) at 20℃-500℃,normal conductive orthorhombic structure 2(a<b<c/3)from 550℃ to about 750℃ and semiconductive-like tetragonal structure (a=b<c/3)from about 800℃ to 950℃.However, the boundaries of the three zones is not much distinctive because there is a continuous transi- tion from the orthorhombic to tetragonal struc- ture.Furthermore,the processes of orthorhom- bic-tetragonal transition in the range of 350℃-950℃ are not only continuous but also reversible.The isothermal transition of orthorhombic 2 to orthorhombic 1 occurs at 350℃-500℃,while the maximum rate of transition and high T_c superconductivity can be obtained at about 460℃.This process of isothermal transition depends on the ordering of oxygen atoms or vacancies and the thermodynamic equilibrium to allow the oxygen diffusion.
文摘The generated heat by the superconducting windings and the other parts such as current leads in transformer increases the hottest point temperature(HPT)and causes the high temperature superconducting(HTS)windings to quench.Due to the properties of superconducting windings,reducing the HPT is of critical importance for the stable operation of the HTS transformer.The cooling system of HTS transformers,not only provides the cryogenic temperature for the proper operation of the superconductors but also is responsible for dissipating the generated heat by the windings.In this paper,the effect of the angle of inlet pipes in cooling system was investigated.This was a simple and effective solution which increases the heat transfer in liquid nitrogen.It was shown that inlet angle has a significant effect on the flow turbulence and the windings temperature.The Perlator is used as a lattice sheet which is installed inside the inlet valve and increases the turbulence of inlet flow of liquid nitrogen to increase heat transfer and reduce HPT.The thermal analysis is obtained by finite element method using ANSYS Fluent software.The influence of changing the inlet pipe angle and different structure of Perlator on heat transfer was investigated.
基金supported by the Ministry of Science and Technology of China (2002AA306381)Tebian Electric Apparatus Stock Co.,Ltd (TBEA)and the‘100 Talents Project’of Chinese Academy of Sciences,China (0640111C11).
文摘A 630-kVA 10.5 kV/0.4 kV three-phase high temperature superconducting(HTS)power transformer was successfully developed and tested in a live grid.The windings were wound by hermetic stainless steelreinforced multi-filamentary Bi2223/Ag tapes.The structures of primary windings are solenoid with insulation and cooling path among layers,and those of secondary windings consist of double-pancakes connected in parallel.Toroidal cryostat is made from electrical insulating glass fiber reinforced plastics(GFRP)materials with room temperature bore for commercial amorphous alloy core with five limbs.Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature.An insulation technology of double-half wrapping up the Bi2223/Ag tape with Kapton film is used by a winding machine developed by the authors.Fundamental characteristics of the transformer are obtained by standard short-circuit and no-load tests,and it is shown that the transformer meets operating requirements in a live grid.