A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the p...A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the phase behavior of the heavy oil-solvent mixture(HO-SM)systems with various mole fractions of SM.The experimental results show that as the mole fraction of SM increases,the saturation pressures and swelling factors of the HO-SM systems considerably increase,and the viscosities and densities of the HO-SM systems decrease.The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution.Therefore,the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir.The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes.The theoretical methodology can accurately predict the saturation pressures,swelling factors,and densities of HO-SM systems with various mole fractions of SM,with average error percentages of1.77%for saturation pressures,0.07%for swelling factors,and 0.07%for densities.展开更多
Empirical equations for predicting the viscosity of Iranian crude oils above, at and below the bub-ble-point pressure were developed based on pressure-volume-temperature(PVT) data of 57 bottom hole samples collected f...Empirical equations for predicting the viscosity of Iranian crude oils above, at and below the bub-ble-point pressure were developed based on pressure-volume-temperature(PVT) data of 57 bottom hole samples collected from central, southern and offshore oil fields of Iran. Both statistical and graphical techniques were employed to evaluate these equations compared with other empirical correlations. The results show that the developed correlations present better accuracy and performance for predicting the viscosity of Iranian crude oils than those correlations in literature.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51604293)the Shandong Provincial Natural Science Foundation,China(No.ZR2016EEB30)+3 种基金the Fundamental Research Funds for the Central Universities(No.17CX02009A)the Qingdao Applied Basic Research Program(Source Innovation)(No.17-1-1-32-jch)the Scientific Research Foundation of China University of Petroleum for Talent Introduction(No.YJ201601093)the National Science and Technology Major Project(2016ZX05031-002)。
文摘A novel experimental procedure was proposed to investigate the phase behavior of a solvent mixture(SM)(64 mol%CH4,8 mol%CO2,and 28 mol%C3 H8)with heavy oil.Then,a theoretical methodology was employed to estimate the phase behavior of the heavy oil-solvent mixture(HO-SM)systems with various mole fractions of SM.The experimental results show that as the mole fraction of SM increases,the saturation pressures and swelling factors of the HO-SM systems considerably increase,and the viscosities and densities of the HO-SM systems decrease.The heavy oil is upgraded in situ via asphaltene precipitation and SM dissolution.Therefore,the solvent-enriched oil phase at the top layer of reservoirs can easily be produced from the reservoir.The aforementioned results indicate that the SM has promising application potential for enhanced heavy oil recovery via solvent-based processes.The theoretical methodology can accurately predict the saturation pressures,swelling factors,and densities of HO-SM systems with various mole fractions of SM,with average error percentages of1.77%for saturation pressures,0.07%for swelling factors,and 0.07%for densities.
文摘Empirical equations for predicting the viscosity of Iranian crude oils above, at and below the bub-ble-point pressure were developed based on pressure-volume-temperature(PVT) data of 57 bottom hole samples collected from central, southern and offshore oil fields of Iran. Both statistical and graphical techniques were employed to evaluate these equations compared with other empirical correlations. The results show that the developed correlations present better accuracy and performance for predicting the viscosity of Iranian crude oils than those correlations in literature.