The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type...The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.展开更多
The first automatic algorithm was designed to estimate the pulse pressure variation (PPVPPV) from arterial blood pressure (ABP) signals under spontaneous breathing conditions. While currently there are a few publicly ...The first automatic algorithm was designed to estimate the pulse pressure variation (PPVPPV) from arterial blood pressure (ABP) signals under spontaneous breathing conditions. While currently there are a few publicly available algorithms to automatically estimate PPVPPV accurately and reliably in mechani-cally ventilated subjects, at the moment there is no automatic algorithm for estimating PPVPPV on sponta-neously breathing subjects. The algorithm utilizes our recently developed sequential Monte Carlo method (SMCM), which is called a maximum a-posteriori adaptive marginalized particle filter (MAM-PF). The performance assessment results of the proposed algorithm on real ABP signals from spontaneously breath-ing subjects were reported.展开更多
In this paper,a divergence-free and pressure-oscillation-free projection method for solving the incompressible Navier-Stokes equations on the non-staggered grid is presented.The exact discrete projection method is use...In this paper,a divergence-free and pressure-oscillation-free projection method for solving the incompressible Navier-Stokes equations on the non-staggered grid is presented.The exact discrete projection method is used to compute the velocity field,which ensures the discrete divergence of the velocity field is zero.In order to eliminate the odd-even decoupling in the pressure field,a filtering procedure is proposed and applied to the pressure field.We have shown this filter recovers the grid scale ellipticity in the pressure field and the odd-even decoupling can be removed effectively.The proposed numerical scheme is further verified through numerical experiments.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51076014)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20101101110011)
文摘The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.
文摘The first automatic algorithm was designed to estimate the pulse pressure variation (PPVPPV) from arterial blood pressure (ABP) signals under spontaneous breathing conditions. While currently there are a few publicly available algorithms to automatically estimate PPVPPV accurately and reliably in mechani-cally ventilated subjects, at the moment there is no automatic algorithm for estimating PPVPPV on sponta-neously breathing subjects. The algorithm utilizes our recently developed sequential Monte Carlo method (SMCM), which is called a maximum a-posteriori adaptive marginalized particle filter (MAM-PF). The performance assessment results of the proposed algorithm on real ABP signals from spontaneously breath-ing subjects were reported.
文摘In this paper,a divergence-free and pressure-oscillation-free projection method for solving the incompressible Navier-Stokes equations on the non-staggered grid is presented.The exact discrete projection method is used to compute the velocity field,which ensures the discrete divergence of the velocity field is zero.In order to eliminate the odd-even decoupling in the pressure field,a filtering procedure is proposed and applied to the pressure field.We have shown this filter recovers the grid scale ellipticity in the pressure field and the odd-even decoupling can be removed effectively.The proposed numerical scheme is further verified through numerical experiments.