The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g...The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS.展开更多
The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore ...The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.展开更多
This study aimed to reveal the influence of different free-iron-oxides contents on the strength and deformation characteristics of in situ lateritic soil.A test method that combined the selective chemical dissolution ...This study aimed to reveal the influence of different free-iron-oxides contents on the strength and deformation characteristics of in situ lateritic soil.A test method that combined the selective chemical dissolution method and in situ Ménard pressuremeter test(PMT)was proposed.The soaking time in dithioniteecitrateebicarbonate(DCB)solution was used as a variable to control the free-iron-oxides content in lateritic soil.Then,the in situ lateritic soil boreholes with different soaking time were tested by PMT.The results showed that the in situ horizontal pressure p0,critical edge pressure pf,ultimate pressure prediction pl,pressuremeter modulus Em,shear modulus Gm,and foundation-bearing capacity f0k of lateritic soil decreased rapidly after immersing in DCB solution within 1e4 d.With increasing soaking time,the decrease rate reduced gradually.Moreover,the relationship curve between free-iron-oxides content and soaking time declined rapidly and then stabilized,and the free-iron-oxides content at the inflection point was 30.11 g/kg.When the free-iron-oxides content changed to the inflection point,the free-iron-oxides that played a cementing role was largely removed,indicating that the effective cementing iron-content of Miaoling lateritic soil was about 52.9%.This study demonstrated that the proposed test method can determine the influence of free-iron-oxides content on the strength and deformation characteristics of lateritic soil.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant No.51709290)the Key Scientific Research Project of colleges and universities in Henan Province-Special Project of Basic Research(Grant No.20zx009)the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.22A580008).
文摘The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N27)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.
基金support for this work was provided by the National Natural Science Foundation of China(Grant Nos.41772339,41877281,and 52178372).
文摘This study aimed to reveal the influence of different free-iron-oxides contents on the strength and deformation characteristics of in situ lateritic soil.A test method that combined the selective chemical dissolution method and in situ Ménard pressuremeter test(PMT)was proposed.The soaking time in dithioniteecitrateebicarbonate(DCB)solution was used as a variable to control the free-iron-oxides content in lateritic soil.Then,the in situ lateritic soil boreholes with different soaking time were tested by PMT.The results showed that the in situ horizontal pressure p0,critical edge pressure pf,ultimate pressure prediction pl,pressuremeter modulus Em,shear modulus Gm,and foundation-bearing capacity f0k of lateritic soil decreased rapidly after immersing in DCB solution within 1e4 d.With increasing soaking time,the decrease rate reduced gradually.Moreover,the relationship curve between free-iron-oxides content and soaking time declined rapidly and then stabilized,and the free-iron-oxides content at the inflection point was 30.11 g/kg.When the free-iron-oxides content changed to the inflection point,the free-iron-oxides that played a cementing role was largely removed,indicating that the effective cementing iron-content of Miaoling lateritic soil was about 52.9%.This study demonstrated that the proposed test method can determine the influence of free-iron-oxides content on the strength and deformation characteristics of lateritic soil.