期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Thermally Coupled Reactive Distillation Column for the Hydrolysis of Methyl Acetate 被引量:3
1
作者 Zhai Jian Liu Yuliang +1 位作者 Sun Lanyi Wang Rujun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第2期101-108,共8页
A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys... A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process. 展开更多
关键词 different pressure thermally coupled distillation reactive distillation thermodynamic efficiency energy savings total annual cost
下载PDF
Comparison of Extractive Distillation and Pressure-Swing Distillation for Methanol and Acetonitrile Separation
2
作者 Han Dongmin Chen Yanhong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期137-146,共10页
In the present work,a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile separation is performed for the first time.Different separation alternatives,including t... In the present work,a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile separation is performed for the first time.Different separation alternatives,including the conventional extractive distillation,the extractive distillation with vapor or liquid side-stream,the pressure-swing distillation with or without full heat integration,and the heat-pump assisted pressure-swing distillation are rigorously simulated and optimized based on the minimum total annual cost(TAC)via the sequential iterative strategy.The results show that TAC and CO2 emission of the new extractive distillation with vapor side-stream(Vapor-SED)are similar to those of the extractive distillation with liquid side-stream(Liquid-SED).Furthermore,the Vapor-SED and Liquid-SED can achieve 30.01%and 30.56%reduction in TAC and 23.32%and 23.49%reduction in CO2 emission,respectively,over the most competitive fully heat-integrated PSD configuration.Hence,the extractive distillation with vapor or liquid side-stream appears to be a better option economically and environmentally for the separation of methanol and acetonitrile. 展开更多
关键词 AZEOTROPE extractive distillation pressure swing distillation TAC methanol/acetonitrile
下载PDF
Using hot-vapor bypass for pressure control in distillation columns
3
作者 Stefano Ciannella Arthur Siqueira Damasceno +3 位作者 Icaro Caze Nunes Gilvan Wanderley de Farias Neto Wagner Brandao Ramos Romildo Pereira Brito 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期144-151,共8页
Distillation column control is widely explored in literature due to its complexity and importance in chemical and petrochemical industries. In this process, pressure represents one of the most important variables to b... Distillation column control is widely explored in literature due to its complexity and importance in chemical and petrochemical industries. In this process, pressure represents one of the most important variables to be controlled. However, there are few studies about how pressure affects the dynamic behavior of distillation columns and most research on distillation column control involve direct manipulation of cooling fluid through the condenser. Nevertheless, such an approach demands constant changes in cooling fluid flowrates that are commonly by the order of tons per hour, which can be difficult to work or even unfeasible in a real plant. Furthermore, this strategy is usually avoided, as it can cause fouling and corrosion acceleration. The hot-vapor bypass strategy fits well as a solution for these issues, eliminating the need to dynamically manipulate cooling fluid flowrates in the condensation unit. This work presents the modeling and simulation of a conventional distillation column for the separation of water and ethanol, in which a comparative study between a conventional pressure control and a control using hot-vapor bypass was performed. The main results were obtained through dynamic simulations which considered various disturbances in the feed stream, and demonstrated superior performance by the hot-vapor bypass system over the usual scheme proposed in literature, while evaluating the lntegral Absolute Error (IAE) norm as the control performance index. 展开更多
关键词 distillation Pressure control Hot-vapor bypass
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部