基于精确Zoeppritz方程的叠前地震反演方法在面向低信噪比地震资料的应用时仍然存在较大挑战。马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)模拟是一种启发式的全局寻优算法,是实现叠前弹性参数非线性反演的有效途径。常规基于M...基于精确Zoeppritz方程的叠前地震反演方法在面向低信噪比地震资料的应用时仍然存在较大挑战。马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)模拟是一种启发式的全局寻优算法,是实现叠前弹性参数非线性反演的有效途径。常规基于MCMC算法的叠前反演采用高斯分布来刻画弹性参数的统计特征,在应用于复杂岩性储层时有较大的局限性。同时,由于地下模型参数空间巨大以及地震数据中噪声等因素的影响,MCMC对弹性参数后验概率分布的搜索过程极易受到局部极值的影响,这使得基于MCMC的叠前反演较难获得稳定、准确的结果。本文针对实际复杂储层及低信噪比地震资料条件下基于精确Zoeppritz方程的叠前反演问题,提出了一种改进的MCMC弹性参数反演方法。该方法首先利用低频模型约束,将待反演参数转换为模型参数的扰动量,从而降低后验概率分布的复杂度;其次,通过对似然函数取对数,并利用低频模型来约束地震正演过程;最后,利用基于随机子空间采样的多链算法对叠前非线性反演问题进行全局寻优,以避免采样过程过早地收敛到局部极值。低信噪比模拟数据和实际数据的测试表明,本文所提方法能够获得更加准确、稳定的弹性参数反演结果,并且能够对反演结果给出可信、定量的不确定性估计。展开更多
Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resoluti...Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.展开更多
Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in thes...Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in these approximations increases with increasing angle of incidence and variation of the elastic parameters, which increases the number of inversion solutions and minimizes the inversion accuracy. In this study, we explore a method for solving the reflection coefficients by using the Zoeppritz equations. To increase the accuracy of prestack inversion, the simultaneous inversion of P-wave velocity, S-wave velocity, and density by using prestack large-angle seismic data is proposed based on generalized linear inversion theory. Moreover, we reduce the ill posedness and increase the convergence of prestack inversion by using the regularization constraint damping factor and the conjugate gradient algorithm. The proposed prestack inversion method uses prestack large-angle seismic data to obtain accurate seismic elastic parameters that conform to prestack seismic data and are consistent with logging data from wells.展开更多
The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very ...The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very important. In this paper, we present a new inversion algorithm and approach based on the in-depth analysis of the causes in their accuracy differences. With this new method, the inversion accuracy of the three parameters is improved synchronously by reasonable approximations and mutual constraint among the parameters. Theoretical model calculations and actual data applications with this method indicate that the three elastic parameters all have high inversion accuracy and maintain consistency, which also coincides with the theoretical model and actual data. This method has good application prospects.展开更多
Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's r...Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation-maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.展开更多
Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this stud...Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.展开更多
储层流体识别是油气勘探领域的重要研究方向。页岩储层具有较强的垂直横向各向同性(Transverse Isotropy with a Vertical Axis of Symmetry,VTI)介质特征,在流体因子估测中带来不容忽视的影响。为此,根据Rüger纵波反射系数方程,...储层流体识别是油气勘探领域的重要研究方向。页岩储层具有较强的垂直横向各向同性(Transverse Isotropy with a Vertical Axis of Symmetry,VTI)介质特征,在流体因子估测中带来不容忽视的影响。为此,根据Rüger纵波反射系数方程,提出了一种基于VTI介质弹性阻抗的流体因子、杨氏模量及各向异性参数反演方法。首先,推导以Russell流体因子、杨氏模量和等效各向异性参数表示的反射系数近似公式和弹性阻抗方程;然后,通过弹性阻抗反演估计流体因子、杨氏模量和各向异性参数,并比较了各向异性参数对反演结果的影响。模型测试和实际工区数据应用结果表明,该方法可以合理、准确地预测流体因子、杨氏模量和各向异性参数,为页岩储层流体识别、脆性参数和各向异性发育程度预测提供了一种新的方法。展开更多
Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structur...Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.展开更多
The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the ab...The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.展开更多
In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into co...In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.展开更多
文摘基于精确Zoeppritz方程的叠前地震反演方法在面向低信噪比地震资料的应用时仍然存在较大挑战。马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)模拟是一种启发式的全局寻优算法,是实现叠前弹性参数非线性反演的有效途径。常规基于MCMC算法的叠前反演采用高斯分布来刻画弹性参数的统计特征,在应用于复杂岩性储层时有较大的局限性。同时,由于地下模型参数空间巨大以及地震数据中噪声等因素的影响,MCMC对弹性参数后验概率分布的搜索过程极易受到局部极值的影响,这使得基于MCMC的叠前反演较难获得稳定、准确的结果。本文针对实际复杂储层及低信噪比地震资料条件下基于精确Zoeppritz方程的叠前反演问题,提出了一种改进的MCMC弹性参数反演方法。该方法首先利用低频模型约束,将待反演参数转换为模型参数的扰动量,从而降低后验概率分布的复杂度;其次,通过对似然函数取对数,并利用低频模型来约束地震正演过程;最后,利用基于随机子空间采样的多链算法对叠前非线性反演问题进行全局寻优,以避免采样过程过早地收敛到局部极值。低信噪比模拟数据和实际数据的测试表明,本文所提方法能够获得更加准确、稳定的弹性参数反演结果,并且能够对反演结果给出可信、定量的不确定性估计。
基金supported by the 863 Program(Grant No.2007AA06Z218)
文摘Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.
基金supported by the 973 Program of China(No.2011CB201104 and 2011ZX05009)the National Science and the Technology Major Project(No.2011ZX05006-06)
文摘Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in these approximations increases with increasing angle of incidence and variation of the elastic parameters, which increases the number of inversion solutions and minimizes the inversion accuracy. In this study, we explore a method for solving the reflection coefficients by using the Zoeppritz equations. To increase the accuracy of prestack inversion, the simultaneous inversion of P-wave velocity, S-wave velocity, and density by using prestack large-angle seismic data is proposed based on generalized linear inversion theory. Moreover, we reduce the ill posedness and increase the convergence of prestack inversion by using the regularization constraint damping factor and the conjugate gradient algorithm. The proposed prestack inversion method uses prestack large-angle seismic data to obtain accurate seismic elastic parameters that conform to prestack seismic data and are consistent with logging data from wells.
基金sponsored by the National Major Program (No. 2011ZX05006-006)the 973 Program of China (No. 2011CB201104)Technical Research of Elastic Flooding Boundary and Well Network Optimization at the Development Late Stage of Low Permeable Oil Field (No. 2011ZX05009)
文摘The three parameters of P-wave velocity, S-wave velocity, and density have remarkable differences in conventional prestack inversion accuracy, so study of the consistency inversion of the "three parameters" is very important. In this paper, we present a new inversion algorithm and approach based on the in-depth analysis of the causes in their accuracy differences. With this new method, the inversion accuracy of the three parameters is improved synchronously by reasonable approximations and mutual constraint among the parameters. Theoretical model calculations and actual data applications with this method indicate that the three elastic parameters all have high inversion accuracy and maintain consistency, which also coincides with the theoretical model and actual data. This method has good application prospects.
基金supported by CNPC fundamental research project(No.2014E-3204)
文摘Economic shale gas production requires hydraulic fracture stimulation to increase the formation permeability. Hydraulic fracturing strongly depends on geomechanical parameters such as Young's modulus and Poisson's ratio. Fracture-prone sweet spots can be predicted by prestack inversion, which is an ill-posed problem; thus, regularization is needed to obtain unique and stable solutions. To characterize gas-bearing shale sedimentary bodies, elastic parameter variations are regarded as an anisotropic Markov random field. Bayesian statistics are adopted for transforming prestack inversion to the maximum posterior probability. Two energy functions for the lateral and vertical directions are used to describe the distribution, and the expectation-maximization algorithm is used to estimate the hyperparameters of the prior probability of elastic parameters. Finally, the inversion yields clear geological boundaries, high vertical resolution, and reasonable lateral continuity using the conjugate gradient method to minimize the objective function. Antinoise and imaging ability of the method were tested using synthetic and real data.
文摘Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.
文摘储层流体识别是油气勘探领域的重要研究方向。页岩储层具有较强的垂直横向各向同性(Transverse Isotropy with a Vertical Axis of Symmetry,VTI)介质特征,在流体因子估测中带来不容忽视的影响。为此,根据Rüger纵波反射系数方程,提出了一种基于VTI介质弹性阻抗的流体因子、杨氏模量及各向异性参数反演方法。首先,推导以Russell流体因子、杨氏模量和等效各向异性参数表示的反射系数近似公式和弹性阻抗方程;然后,通过弹性阻抗反演估计流体因子、杨氏模量和各向异性参数,并比较了各向异性参数对反演结果的影响。模型测试和实际工区数据应用结果表明,该方法可以合理、准确地预测流体因子、杨氏模量和各向异性参数,为页岩储层流体识别、脆性参数和各向异性发育程度预测提供了一种新的方法。
基金financially supported by the National Natural Science Foundation of China(No.U1262207)the National Science and Technology Major Project of China(Nos.2011 ZX05023-005-005 and 2011 ZX05019-006)the PetroChina Innovation Foundation(No.2013D-5006-0303)
文摘Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.
基金supported in part by the National Natural Science Foundation of China(No.40974069,41174119)the Research of Novel Method and Technology of Geophysical Prospecting,CNPC(No.2011A-3602)the National Major Science and Technology Program(No.2011ZX05010,2011ZX05024)
文摘The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.
文摘In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.