Based on full-scale segment model tests of the abnormally shaped anchorage zone of the Maling River cable-stayed bridge pylon and FEM analysis, its mechanical and deformation properties were obtained, and the validity...Based on full-scale segment model tests of the abnormally shaped anchorage zone of the Maling River cable-stayed bridge pylon and FEM analysis, its mechanical and deformation properties were obtained, and the validity of FEM analysis was verified. An optimal layout of prestressed tendons in the anchorage zone was obtained by using the strut-and-tie method (STM). The comparison FEM analysis between the full-scale segment model and the optimal prestressed tendons model show that: the optimal model not only saves prestressed tendons, but also achieves the same cracking resistance; STM method is reliable and accurate in the analysis of the abnormally shaped anchorage zone of cable-stayed bridge pylon.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test...The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.展开更多
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen...Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.展开更多
基金The National Natural Science Foundation of China (No.50925828)
文摘Based on full-scale segment model tests of the abnormally shaped anchorage zone of the Maling River cable-stayed bridge pylon and FEM analysis, its mechanical and deformation properties were obtained, and the validity of FEM analysis was verified. An optimal layout of prestressed tendons in the anchorage zone was obtained by using the strut-and-tie method (STM). The comparison FEM analysis between the full-scale segment model and the optimal prestressed tendons model show that: the optimal model not only saves prestressed tendons, but also achieves the same cracking resistance; STM method is reliable and accurate in the analysis of the abnormally shaped anchorage zone of cable-stayed bridge pylon.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金This paper is supported by the Foundation for Research Project of ChinaCommunications Second Highway Survey Design and ResearchInstitute .
文摘The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.
文摘Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.