A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement ...A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.展开更多
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte...Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.展开更多
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea...In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.展开更多
Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slo...Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.展开更多
A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
Creep is an important characteristic of bamboo and wood materials under long-term loading.This paper aims to study the long-term bending beha-viour of prestressed glulam bamboo-wood beam(GBWB).For this,14 pre-stressed...Creep is an important characteristic of bamboo and wood materials under long-term loading.This paper aims to study the long-term bending beha-viour of prestressed glulam bamboo-wood beam(GBWB).For this,14 pre-stressed GBWBs were selected and subjected to a long-term loading test for 60 days.Then,a comparative analysis was performed for the effects of pre-tension values,the number of pre-stressed wires,and long-term load on the stress variation of the steel wire and the long-term deflection of the beam midspan.The test results showed that with the number of prestressed wires increasing,the total stress of the steel wire in the beam midspan and the ratio of the long-term deflec-tion to the total deflection decreases decreased,but when the number of steel wires exceeded 4,the total stress and long-term deflection was less infuenced;with the pre-tension value increasing,the ratio of the total stress of the steel wire in the beam midspan and the ratio of the long-temm deflection to the total deflec-tion also decreased,but when the prestress force was greater than 3.975 kN,the:total stress and long-term deflection were less affected;with the other parameters unchanged,when the value of the long-term load increased,the total stress of the steel wire decreased,and the long-temm deflection of the beam midspan increased,which shall be more significant with the long-term load greater than 30%of the standard ultimate bearing capacity.After the test,the experimental data were fitted,and the creep coefficient was given.Finally,the long-term stiffness calcula-tion fommula of the pre-stressed GBWB based on creep effect was proposed.The research findings have certain theoretical significance and engineering value.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa...The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.展开更多
The free vibration and transient wave in a prestressed Rayleigh-Timoshenko beam subject to arbitrary transverse forces are analyzed by the newly developed method of reverberation-ray matrix (MRRM). The effects of shea...The free vibration and transient wave in a prestressed Rayleigh-Timoshenko beam subject to arbitrary transverse forces are analyzed by the newly developed method of reverberation-ray matrix (MRRM). The effects of shear deformation and rotational inertia are taken into consideration. With a Fourier transform technique, the general wave solutions with two sets of unknown amplitude coefficients are obtained in the transformed domain for an unbonded prestressed beam under the action of arbitrary external excitations. From the coupling at joints and the compatibility of displacements in each member, the free and forced vibration responses of a beam with various boundary conditions are finally evaluated through certain numerical algorithms. Results are presented for a simply-supported beam subject to either a point fixed load or moving load. Good agreement with the finite element method (FEM) is obtained. The present work is instructive for high-speed railway bridge design and structural health monitoring.展开更多
文摘A full-range nonlinear analysis method for fatigue damage in prestressed concrete beams is presented. New damage accumulation models are proposed to describe the fatigue damage evolution in concrete and reinforcement respectively. Based on the stress analysis for cross section, the stress redistrbution in the fatigue damage process, due to the different damage mechanisms of concrete and reinforcement, is considered. The nonlinear damage analysis is achieved by means of piecewise linearity, and it is applicable on the condition of repeated loadings with variable amplitude. Fatigue damage modeling of a beam is implemented to illustrate that the proposed method can preferably fit the experimental results.
基金Funded by the National Science Foundation of China (No. 50808090)
文摘Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.
基金Sponsored by the National Natural Science Foundation of China(Grant No.5117804251308159+4 种基金51578047)the National High Technology Research and Development Program Project(Grant No.2008AA11Z102)China Railway Corporation Research and Development of Science and Technology Plan Project(Grant No.2014G004-B)China Communications Construction Co.LTD Science and Technology Research and Development Projects(Grant No.2014-ZJKJ-03)
文摘In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping(N2021Z003)the Special Project of Service Industry Research of Wuyi University under Grant(2021XJFWCY03)+2 种基金the Research Launch Fund of Wuyi University’s Introduct Talent(YJ202309)the Fujian Training Program of Innovation and Entrepreneurship for Undergraduates(S202210397076)Research on the Stress Performance of Reinforced Bamboo Highway Guardrail with Embedded Channel Steel(LS202304).
文摘Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
基金In the process,this project was supported by the Fundamental Research Funds for the Central Universities(2572017DB02)the natural science foundation of heilongjiang province(LH2019E005)Harbin science and technology innovation talent fund project(2017RAQXJ086).
文摘Creep is an important characteristic of bamboo and wood materials under long-term loading.This paper aims to study the long-term bending beha-viour of prestressed glulam bamboo-wood beam(GBWB).For this,14 pre-stressed GBWBs were selected and subjected to a long-term loading test for 60 days.Then,a comparative analysis was performed for the effects of pre-tension values,the number of pre-stressed wires,and long-term load on the stress variation of the steel wire and the long-term deflection of the beam midspan.The test results showed that with the number of prestressed wires increasing,the total stress of the steel wire in the beam midspan and the ratio of the long-term deflec-tion to the total deflection decreases decreased,but when the number of steel wires exceeded 4,the total stress and long-term deflection was less infuenced;with the pre-tension value increasing,the ratio of the total stress of the steel wire in the beam midspan and the ratio of the long-temm deflection to the total deflec-tion also decreased,but when the prestress force was greater than 3.975 kN,the:total stress and long-term deflection were less affected;with the other parameters unchanged,when the value of the long-term load increased,the total stress of the steel wire decreased,and the long-temm deflection of the beam midspan increased,which shall be more significant with the long-term load greater than 30%of the standard ultimate bearing capacity.After the test,the experimental data were fitted,and the creep coefficient was given.Finally,the long-term stiffness calcula-tion fommula of the pre-stressed GBWB based on creep effect was proposed.The research findings have certain theoretical significance and engineering value.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.
文摘The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.
基金Project supported by the National Basic Research Program of China (No. 2009CB623204)the National Natural Science Foundation of China (Nos. 10725210 and 10972196)
文摘The free vibration and transient wave in a prestressed Rayleigh-Timoshenko beam subject to arbitrary transverse forces are analyzed by the newly developed method of reverberation-ray matrix (MRRM). The effects of shear deformation and rotational inertia are taken into consideration. With a Fourier transform technique, the general wave solutions with two sets of unknown amplitude coefficients are obtained in the transformed domain for an unbonded prestressed beam under the action of arbitrary external excitations. From the coupling at joints and the compatibility of displacements in each member, the free and forced vibration responses of a beam with various boundary conditions are finally evaluated through certain numerical algorithms. Results are presented for a simply-supported beam subject to either a point fixed load or moving load. Good agreement with the finite element method (FEM) is obtained. The present work is instructive for high-speed railway bridge design and structural health monitoring.