期刊文献+
共找到1,270篇文章
< 1 2 64 >
每页显示 20 50 100
Fatigue behavior of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer sheets 被引量:3
1
作者 潘建伍 吴刚 袁希贵 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期84-87,共4页
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ... In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets. 展开更多
关键词 hybrid fiber reinforced polymer sheet basalt-aramid basalt-carbon fatigue experiment stiffness degradation model
下载PDF
High-sensitivity phase imaging eddy current magneto-optical system for carbon fiber reinforced polymers detection
2
作者 Jiang-Shan Ai Quan Zhou +5 位作者 Yi-Ping Liang Chun-Rui Feng Bing Long Li-Bing Bai Yong-Gang Wang Chao Ren 《Journal of Electronic Science and Technology》 EI CSCD 2023年第4期48-59,共12页
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems... This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems. 展开更多
关键词 carbon fiber reinforced polymers Defect detection Eddy current magneto-optical Nondestructive testing Phase imaging
下载PDF
Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips
3
作者 Feras ALZOUBI 《Journal of Chongqing University》 CAS 2007年第4期305-310,共6页
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer ... This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with sidebonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in AC1-440 and fib European code were compared with the experimental results. 展开更多
关键词 reinforced concrete beam carbon fiber reinforced polymer shear strength
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
4
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part I: Experimental study 被引量:11
5
作者 WU Jong-hwei YEN Tsong +1 位作者 HUNG Chien-hsing LIN Yiching 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期166-174,共9页
This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for ... This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams). 展开更多
关键词 Strengthening prestressed glass fiber reinforcement polymer Modulus of Elasticity R. C. beams
下载PDF
Study of galvanic corrosion and mechanical joint properties of AZ31B and carbon-fiber–reinforced polymer joined by friction self-piercing riveting 被引量:2
6
作者 Yong Chae Lim Jiheon Jun +4 位作者 Donovan N.Leonard Yuan Li Jian Chen Michael P.Brady Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期434-445,共12页
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ... A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。 展开更多
关键词 Multi-material joining carbon fiberreinforced polymer AZ31B Friction self-piercing riveting Galvanic corrosion Mechanical joint strength
下载PDF
Mechanical joint performances of friction self-piercing riveted carbon fiber reinforced polymer and AZ31B Mg alloy 被引量:1
7
作者 Yuan Li Yong Chae Lim +2 位作者 Jian Chen Jiheon Jun Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3367-3379,共13页
Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load... Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing. 展开更多
关键词 Friction self-piercing riveting Magnesium alloy carbon fiber reinforced polymer Dynamic recrystallization Fatigue life Crack initiation
下载PDF
Square concrete columns strengthened with carbon fiber reinforced plastics sheets at low temperatures 被引量:1
8
作者 马芹永 卢小雨 《Journal of Central South University》 SCIE EI CAS 2009年第5期835-840,共6页
Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceabilit... Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) sheet square concrete column stress--strain model
下载PDF
Parameters of static response of carbon fiber reinforced polymer(CFRP) suspension cables
9
作者 王立彬 吴勇 Mohammad Noori 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3123-3132,共10页
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co... The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically. 展开更多
关键词 suspension bridge carbon fiber reinforced polymer (CFRP) main cable steel suspension cable static response
下载PDF
Investigating Some Parameters Affecting Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Laminate
10
作者 Azad A.Mohammed 《Journal of World Architecture》 2018年第5期1-6,共6页
In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For t... In this paper,the influence of some important parameters affecting the flexural behavior of reinforced concrete beams strengthened with one layer of carbon fiber reinforced polymer(CFRP)laminate has been studied.For this purpose,six reinforced concrete beams were cast and tested in the laboratory.Based on the obtained data,when CFRP laminate is applied to the tension face,too close to the steel rebar,the flexural strength of the strengthened beam is reduced.In general,the performance of the beam strengthened with one wide CFRP strip is better than that strengthened with two equivalent narrow strips.Ultimate load capacity of each strengthened beam was calculated based on the method given by the ACI 440.2R and compared with the test one.It is concluded that,to avoid the steel rebar-CFRP laminate interaction effect,the CFRP laminate depth-to-the effective depth ratio(df/d)should not be smaller than about 1.17. 展开更多
关键词 carbon fiber reinforced polymer concrete BEAM flexure strengthening
下载PDF
STUDY ON ULTRASONIC VIBRATION DRILLING IN CARBON FIBER REINFORCED POLYMERS 被引量:2
11
作者 Zhang Qixin Sun Shiyu (Harbin Institute of Technology Factory 529, Beijing)Luo Jianwei +2 位作者 Feng Youbin Ma Chengxian Tu Xifu (Harbin Institute of Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期72-77,共17页
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th... This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites. 展开更多
关键词 carbon fiber reinforced polymers composites Ultrasonic vibration drilling
全文增补中
Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite 被引量:3
12
作者 S.M.J.Razavi R.Esmaeely Neisiany +2 位作者 S.Nouri Khorasani S.Ramakrishna F.Berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期126-131,共6页
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t... This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. 展开更多
关键词 carbon fiber reinforced polymer Delamination Fracture test Nanofibers Al2O3 nanoparticles
下载PDF
A low-cost and high-strength basalt/carbon fiber reinforced polymer improved by imitating tree-root micro/nano aramid short fiber
13
作者 Guangming YANG Yanan LYU +6 位作者 Fei CHENG Jiaxin HE Shihao ZUO Wenyi HUANG Yunsen HU Xiaozhi HU Xi CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期526-538,共13页
The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fi... The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites. 展开更多
关键词 Basalt carbon fiber reinforced polymer Micro/nano aramid fiber fiber bridging Strength improvement Low-cost substitution
原文传递
Anisotropic Thermal Diffusivity Measurements in High-Thermal-Conductive Carbon-Fiber-Reinforced Plastic Composites 被引量:3
14
作者 Masaya Kuribara Hosei Nagano 《Journal of Electronics Cooling and Thermal Control》 2015年第1期15-25,共11页
This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot p... This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot periodic heating method. The samples were unidirectional (UD) and crossply (CP) CFRPs. All carbon fibers of the UD samples ran in one direction, while those of the CP samples ran in two directions. In both UD and CP CFRPs, from -80&deg;C to +80&deg;C, temperature dependence of thermal diffusivity values increased as temperature decreased. In this temperature range, the anisotropic ratio between the fiber direction and its perpendicular direction of the UD CFRP was 106 - 124. During the anisotropy distribution measurement, it was found that thermal anisotropy can be visualized by scanning the laser in a circle on the sample. The thermal diffusivity of the UD CFRP in the fiber direction was 17 times larger than that in the 15&deg;direction, and the thermal diffusivity in the other directions was lower than that in the 15&deg;direction. The anisotropy distribution for the CP CFRP reflected its inhomogeneous structure. 展开更多
关键词 AC Calorimetric Method Anisotropy carbon-fiber-reinforced polymers High THERMAL Conductivity THERMAL DIFFUSIVITY
下载PDF
Ductility of Timber Beams Strengthened Using Fiber Reinforced Polymer
15
作者 Yusof Ahmad 《Journal of Civil Engineering and Architecture》 2013年第5期535-544,共10页
This research was conducted to investigate the ductility behavior of timber beams strengthened with CFRP (carbon fiber reinforced polymer) plates. The surface to be bonded was spiked by punching small holes of 2 mm ... This research was conducted to investigate the ductility behavior of timber beams strengthened with CFRP (carbon fiber reinforced polymer) plates. The surface to be bonded was spiked by punching small holes of 2 mm in diameter with 10 mm spacing. The aim is to increase bonding capacity by having small studs. Five beams with the dimension of 100 mm x 200 mm x 3,000 mm were tested where one of the beams was used as control beam (unstrengthened). The remaining beams were strengthened with different configurations before tested to failure under four-point loading. The results showed that the ductility was increased as the percentage of CFRP increased. The ductility was dramatically improved where the highest ductility index based on deflection method was 2.2 where the percentage increase was 37.5%, whereas the highest ductility index based on energy method was 3.2 where the percentage increase was 88.2%. From this study, it was found that 0.3% is the optimum value of CFRP area to achieve maximum ductility index. Ductility index obtained from energy method gives higher values when compared to deflection method. All beams in this study did not fail due to peel off or debonding. It was also proved that the spikes that have been made at the wood surface were very effective for bonding. 展开更多
关键词 carbon fiber reinforced polymer ductility index energy method.
下载PDF
Durability of concrete beams reinforced with CFRP sheet under wet-dry cycles and loading 被引量:2
16
作者 李杉 任慧韬 +1 位作者 黄承逵 崔云飞 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期376-380,共5页
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ... The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load. 展开更多
关键词 reinforced concrete beams reinforced carbon fiber reinforced polymers DURABILITY wet-dry cycles sustained load
下载PDF
Micro Model of Carbon Fiber/Cyanate Ester Composites and Analysis of Machining Damage Mechanism 被引量:3
17
作者 Haitao Liu Jie Lin +1 位作者 Yazhou Sun Jinyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期198-208,共11页
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d... Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately. 展开更多
关键词 carbon fiber reinforced polymer COMPOSITES MICRO simulation model MACHINING damage mechanism MILLING and observation experiment Theoretical ANALYSIS
下载PDF
Numerical Determination of Shear Strength of Steel Reinforced Concrete Column Strengthened by CFRP Sheets 被引量:1
18
作者 王铁成 余流 王立军 《Transactions of Tianjin University》 EI CAS 2003年第1期58-62,共5页
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea... The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid. 展开更多
关键词 shear strength carbon fiber reinforced plastic(CFRP) sheets bond slip anchored reinforcing bars
下载PDF
Improvement of interleaving Aramid pulp microfibers on compressive strengths of carbon fiber reinforced polymers with and without impact
19
作者 Fei CHENG Guangming YANG +2 位作者 Yunsen HU Bingyan YUAN Xiaozhi HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期459-470,共12页
Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer(CFRP)composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp(AP)micro/nano-fibers.10-ply CFRP speci... Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer(CFRP)composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp(AP)micro/nano-fibers.10-ply CFRP specimens with 0,2,4,6,8 g/m^(2)AP were tested under uniaxial compression.Those flexible AP fibers,filling the resin-rich regions and further constructing the fiber bridging at the ply interfaces,can effectively suppress delamination growth and lead to very good improvements both in the compressive strength and the elastic modulus.The CFRP specimen with an optimum interlay thickness has a distinct shear failure mode instead of the typical delamination cracking along the direction of continuous carbon fibers.Compressive Strengths After Impacts(CAI)of 12.35 J were also measured,up to 90%improvement in CAI has been observed.It is concluded those ultra-thin interlays of non-woven AP micro/nano-fibers are beneficial to design and manufacture“high strength”CFRP composites. 展开更多
关键词 Compressive strength carbon fiber reinforced polymer(CFRP) Aramid pulp INTERLEAVING Interfacial reinforcing
原文传递
CFRP及EWSS复合加固震损双层高架桥框架式桥墩恢复力模型研究 被引量:1
20
作者 许成祥 吴永昂 +1 位作者 胡序辉 肖良丽 《工程力学》 EI CSCD 北大核心 2024年第5期55-67,共13页
为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行... 为研究碳纤维布(Carbon Fiber Reinforced Polymer,CFRP)及外包型钢(Externally Wrapped Steel Section,EWSS)复合加固震损双层高架桥框架式桥墩的恢复力模型,对1榀原型对比试件、1榀无预损加固试件和2榀遭受不同地震损伤加固试件进行了低周往复加载破坏试验,获取了滞回曲线并提取骨架曲线,分析其滞回特性,提出一种弹性段和强化段为双折线、下降段为指数函数且考虑初始损伤的骨架曲线模型;采用试验数据回归拟合方法,定量描述了试件滞回曲线卸载刚度的退化规律,考虑了同级加载承载力退化和定点指向特征,建立了恢复力模型。研究结果表明:复合加固试件滞回曲线捏缩现象明显,呈倒S型,各滞回环分别相交于骨架曲线上正向、负向荷载为屈服荷载0.25倍的点,峰值荷载后EWSS产生包辛格效应;所提出的骨架曲线模型对中度震损和重度震损加固试件下降段指数函数的参数k建议取值分别为3.6和3.4;所建立的骨架曲线模型和恢复力模型计算结果与试验实测结果吻合较好,可为该类结构弹塑性地震反应分析提供依据。 展开更多
关键词 双层框架式桥墩 地震损伤 碳纤维布及外包型钢复合加固 滞回特性 恢复力模型
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部