A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slo...Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.展开更多
The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The...The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The effect of highly prestressed anchor cable support was studied based on the active support test in the No.3 branch tunnel of Haidong Tunnel.Firstly,the geological conditions and failure causes were analyzed on the basis of the results of geological survey,in-situ test,and rock laboratory test.Then,the Mohr circle form of the highly prestressed anchor cable active support theory for the support of bedded rock mass was given in combination with the excavation compensation method.It is considered that the prestress active compensation value required for the bedded rock mass is larger than that for the homogeneous rock mass.The deformations of rock mass under both passive and active supports were analyzed by numerical simulations.Furthermore,the'pressure bubble'mechanical model for anchor cable support of bedded rock mass in Haidong Tunnel is given.Field monitoring results show that the highly prestressed anchor cable support can control rock mass deformation well,with a maximum deformation of about 200 mm.The prestressed anchor cable is effective in the bedded stratum,which makes the stress of rock mass uniform and reduces the risk of failure of steel arches due to local bias.Meanwhile,the expansion of plastic zone was efficiently controlled,which is of positive significance for the overall stability of rock mass.展开更多
This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were insp...This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.展开更多
The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness de...The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reli...Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reliability mathematics and stochastic processes areconstructed, and the pure theoretical formulae of failure probability of prestressed concretestructures are analyzed. In addition, a simple durability design method for carbonation ofstructures is put forward. According to the analysis, the durability of prestressed concretestructures is superior to that of traditional structures. The research also indicates that theconcrete cover prescribed in the current code (GB 50010-2002) is not adequate. The rational coverthickness should notbe less than 35 or 45 mm according to carbonation or chloride ion attack,respectively.展开更多
New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grou...New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.展开更多
With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement ...With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.展开更多
This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing para...This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.展开更多
In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theor...In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theory for calculating instantaneous prestress loss of the tendons with complicated geometry, a universal numerical model was established. Therefore, the distribution of effective prestress could be simulated after recognizing the nominal coefficients of prestress loss with the obtained stress data of objective steel tendon. The numerical simulation results of a full-length tendon of a three-span continuous beam bridge show that the relative errors between the calculated value and the value in the code are within 5%, which meets the requirement for engineering application.展开更多
This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and ...This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and is suitable for the Bohai Sea and other shallow seas of China. The platform is subjected to temperature. load, or both. The corresponding temperature distribution. strains, cracks. and vulnerable parts of the platform are analyzed respectively. By use of the finite element method and empirical formulas, the temperature field of the model is analyzed. The results agree with the experimental results, thereby verifying! the reliability of these two calculating methods. The paper provides an experimental basis for the des sign of the bearing capacity and normal service state of prestressed concrete platforms.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w...A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.展开更多
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse ...The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.展开更多
This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for ...This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams).展开更多
In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale p...In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.展开更多
The long-term stability of a prestressed anchored slope might be influenced by the durability of the anchorage structure.To understand long-term stability of anchored rock slopes,the research presented herein evaluate...The long-term stability of a prestressed anchored slope might be influenced by the durability of the anchorage structure.To understand long-term stability of anchored rock slopes,the research presented herein evaluated the performance evolution of a prestressed anchored bedding slope system in a corrosive environment by model test.The corrosion process in a prestressed anchor bar was monitored in terms of its open-circuit potential(OCP),corrosion current density(CCD),and electrochemical impedance spectroscopy(EIS).The stability of the prestressed anchored slope was evaluated by monitoring changes in anchorage force and displacements.The experimental results show that prestress and oxygen could reduce the corrosion resistance of the anchor bar,and anchor bars in a chloride-rich environment are very susceptible to corrosion.Prestressed tendons in a corrosive environment suffer a loss of anchorage force,the prestress decreases rapidly after locking,and the rate thereof decreases until stabilising;in the later stage,corrosion leads to the reduction of the cross-sectional area of the steel bar which may cause the reduction in anchorage force again.Anchorage force controls the deformation and stability of the anchored slope,the prestress loss caused by later corrosion may lead to an increased rate of displacement and stability degradation of the prestressed anchored rock slope.展开更多
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping(N2021Z003)the Special Project of Service Industry Research of Wuyi University under Grant(2021XJFWCY03)+2 种基金the Research Launch Fund of Wuyi University’s Introduct Talent(YJ202309)the Fujian Training Program of Innovation and Entrepreneurship for Undergraduates(S202210397076)Research on the Stress Performance of Reinforced Bamboo Highway Guardrail with Embedded Channel Steel(LS202304).
文摘Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.
基金supported by the China Yunnan Province Major Science and Technology Special Plan Foundation Project(Grant No.202002AF080003)the China Railway No.5 Engineering Group Co.,Ltd.The support is greatly appreciated.
文摘The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The effect of highly prestressed anchor cable support was studied based on the active support test in the No.3 branch tunnel of Haidong Tunnel.Firstly,the geological conditions and failure causes were analyzed on the basis of the results of geological survey,in-situ test,and rock laboratory test.Then,the Mohr circle form of the highly prestressed anchor cable active support theory for the support of bedded rock mass was given in combination with the excavation compensation method.It is considered that the prestress active compensation value required for the bedded rock mass is larger than that for the homogeneous rock mass.The deformations of rock mass under both passive and active supports were analyzed by numerical simulations.Furthermore,the'pressure bubble'mechanical model for anchor cable support of bedded rock mass in Haidong Tunnel is given.Field monitoring results show that the highly prestressed anchor cable support can control rock mass deformation well,with a maximum deformation of about 200 mm.The prestressed anchor cable is effective in the bedded stratum,which makes the stress of rock mass uniform and reduces the risk of failure of steel arches due to local bias.Meanwhile,the expansion of plastic zone was efficiently controlled,which is of positive significance for the overall stability of rock mass.
文摘This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.
文摘The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
文摘Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reliability mathematics and stochastic processes areconstructed, and the pure theoretical formulae of failure probability of prestressed concretestructures are analyzed. In addition, a simple durability design method for carbonation ofstructures is put forward. According to the analysis, the durability of prestressed concretestructures is superior to that of traditional structures. The research also indicates that theconcrete cover prescribed in the current code (GB 50010-2002) is not adequate. The rational coverthickness should notbe less than 35 or 45 mm according to carbonation or chloride ion attack,respectively.
文摘New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.
文摘With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.
基金National Science and Technology Support Program Subtopics Under Grant No.2006BAJ03A10-07Changjiang Scholars Program of China
文摘This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.
基金Science & Technology Program for West Communication Construction of MOC(No.200531881215)
文摘In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theory for calculating instantaneous prestress loss of the tendons with complicated geometry, a universal numerical model was established. Therefore, the distribution of effective prestress could be simulated after recognizing the nominal coefficients of prestress loss with the obtained stress data of objective steel tendon. The numerical simulation results of a full-length tendon of a three-span continuous beam bridge show that the relative errors between the calculated value and the value in the code are within 5%, which meets the requirement for engineering application.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59895410)
文摘This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and is suitable for the Bohai Sea and other shallow seas of China. The platform is subjected to temperature. load, or both. The corresponding temperature distribution. strains, cracks. and vulnerable parts of the platform are analyzed respectively. By use of the finite element method and empirical formulas, the temperature field of the model is analyzed. The results agree with the experimental results, thereby verifying! the reliability of these two calculating methods. The paper provides an experimental basis for the des sign of the bearing capacity and normal service state of prestressed concrete platforms.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金supported by the National Natural Science Foundation of China (No.50808090)
文摘A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula.
基金Funded by the Science and Technolog Program of Ministry of Transport of P.R.China(No.2012318352100)
文摘The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.
文摘This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams).
基金Sponsored by the National Natural Science Foundation of China(Grant No.50678050)
文摘In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.
基金strongly supported by the National Natural Science Foundation of China(Project No.41672320 and 41877280)the National Key R&D Program of China(NO.2018YFC0407002)+3 种基金the Foreign experts Program of Hubei Province(WGZJ2020000011)the Fundamental Research Funds for Central Public Welfare Research Institutes(CKSF 2019180/YT)the Research and Transformation Project of the Changjiang River Scientific Research Institute(CKZS2017007/YT)the Innovation Team Project of the Changjiang River Scientific Research Institute(CKSF2017066/YT)。
文摘The long-term stability of a prestressed anchored slope might be influenced by the durability of the anchorage structure.To understand long-term stability of anchored rock slopes,the research presented herein evaluated the performance evolution of a prestressed anchored bedding slope system in a corrosive environment by model test.The corrosion process in a prestressed anchor bar was monitored in terms of its open-circuit potential(OCP),corrosion current density(CCD),and electrochemical impedance spectroscopy(EIS).The stability of the prestressed anchored slope was evaluated by monitoring changes in anchorage force and displacements.The experimental results show that prestress and oxygen could reduce the corrosion resistance of the anchor bar,and anchor bars in a chloride-rich environment are very susceptible to corrosion.Prestressed tendons in a corrosive environment suffer a loss of anchorage force,the prestress decreases rapidly after locking,and the rate thereof decreases until stabilising;in the later stage,corrosion leads to the reduction of the cross-sectional area of the steel bar which may cause the reduction in anchorage force again.Anchorage force controls the deformation and stability of the anchored slope,the prestress loss caused by later corrosion may lead to an increased rate of displacement and stability degradation of the prestressed anchored rock slope.