In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength con...In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.展开更多
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre...The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.展开更多
In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships ...In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.展开更多
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer ...This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with sidebonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in AC1-440 and fib European code were compared with the experimental results.展开更多
This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.R...With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.展开更多
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an...Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.展开更多
For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-s...For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.展开更多
In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corrode...In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corroded RC beams strengthened with non-prestressed AFRP sheets under different degrees of corrosion (minor: reinforcement mass loss is 2.0%, medium: reinforcement mass loss is 6.0%) have been researched experimentally in this paper, to compare with that of the control beams (un-strengthened and un-corroded) and un-strengthened corroded beams, and additionally compare with fatigue performance of those medium corroded RC beams strengthened with prestressed AFRP sheets with permanent anchors. The results show that, (1) compared with un-strengthened corroded beams under the same degrees of corrosion, the cracking, yield and ultimate monotonic loads of the minor corroded RC beam strengthened with non-prestressed AFRP sheets is respectively increased by 20%, 27% and 60%, whereas for the medium corroded RC beam strengthened with non-prestressed AFRP sheets increased by 15%, 36% and 83% respectively. The ultimate deflection of the medium corroded beam strengthened with non-prestressed AFRP sheets is 166% larger than that of the corroded un-strengthened beam under the monotonic load. (2) The fatigue life of the non-prestressed AFRP strengthened medium corroded beam is 10.4 times more than that of the un-strengthened corroded beam, but lower than that of the unstrengthened-uncorroded (virgin) beam. (3) Fatigue experiments of the beams strengthened with prestressed AFRP sheets and with those non-prestressed AFRP sheets show that the fatigue life of the retrofit RC beams increase with increasing prestress level of AFRP sheets.(4) The use of AFRP sheets for strengthening corroded RC beams is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet appl...Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet applications, particularly under cyclic loading. In the present research, five RC beams were constructed, and four of which were retrofitted using various schemes of FRP sheets. All beams were subjected to quasi-static cyclic loading in an attempt to represent the effect repetitive loading. The ultimate load, and deflection response at mid-span of the beams were measured and compared with predictions of a computational model based on finite element analysis. Experimental results demonstrated that hybrid applications of FRP sheets can improve the shear performance of retrofitted RC beams and increase the ultimate strain of the FRP sheets at failure. The results of the computational model were in reasonable agreement with the corresponding experimental results.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
文摘In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.
文摘The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design.
文摘In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.
文摘This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with sidebonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in AC1-440 and fib European code were compared with the experimental results.
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.
文摘With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.
基金financially supported by the National Key Basic Research Development Plan of China(973 Program,Grant No.2015CB655102)the National Natural Science Foundation of China(Grant Nos.51508272 and 51678304)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180433)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630558)the Open Research Funds for State Key Laboratory of High Performance Civil Engineering Materials(Grant No.2015CEM001)
文摘Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.
基金Project(51121005) supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of ChinaProject(50878035) supported by the National Natural Science Foundation of China
文摘For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented.
基金supported bythe National Natural Science Foundation of China (Grant No.50978006)
文摘In order to research the strengthening effects of aramid fiber reinforced polymer (AFRP) sheets on the flexural performance of corroded reinforced concrete (RC) beams, the static and fatigue performance of corroded RC beams strengthened with non-prestressed AFRP sheets under different degrees of corrosion (minor: reinforcement mass loss is 2.0%, medium: reinforcement mass loss is 6.0%) have been researched experimentally in this paper, to compare with that of the control beams (un-strengthened and un-corroded) and un-strengthened corroded beams, and additionally compare with fatigue performance of those medium corroded RC beams strengthened with prestressed AFRP sheets with permanent anchors. The results show that, (1) compared with un-strengthened corroded beams under the same degrees of corrosion, the cracking, yield and ultimate monotonic loads of the minor corroded RC beam strengthened with non-prestressed AFRP sheets is respectively increased by 20%, 27% and 60%, whereas for the medium corroded RC beam strengthened with non-prestressed AFRP sheets increased by 15%, 36% and 83% respectively. The ultimate deflection of the medium corroded beam strengthened with non-prestressed AFRP sheets is 166% larger than that of the corroded un-strengthened beam under the monotonic load. (2) The fatigue life of the non-prestressed AFRP strengthened medium corroded beam is 10.4 times more than that of the un-strengthened corroded beam, but lower than that of the unstrengthened-uncorroded (virgin) beam. (3) Fatigue experiments of the beams strengthened with prestressed AFRP sheets and with those non-prestressed AFRP sheets show that the fatigue life of the retrofit RC beams increase with increasing prestress level of AFRP sheets.(4) The use of AFRP sheets for strengthening corroded RC beams is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
文摘Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet applications, particularly under cyclic loading. In the present research, five RC beams were constructed, and four of which were retrofitted using various schemes of FRP sheets. All beams were subjected to quasi-static cyclic loading in an attempt to represent the effect repetitive loading. The ultimate load, and deflection response at mid-span of the beams were measured and compared with predictions of a computational model based on finite element analysis. Experimental results demonstrated that hybrid applications of FRP sheets can improve the shear performance of retrofitted RC beams and increase the ultimate strain of the FRP sheets at failure. The results of the computational model were in reasonable agreement with the corresponding experimental results.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.