期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading 被引量:1
1
作者 Zi-Han Liu Yi-Lan Kang +2 位作者 Hai-Bin Song Qian Zhang Hai-Mei Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期380-390,共11页
Lithium-ion batteries suffer from mechano–electrochemical coupling problems that directly determine the battery life. In this paper, we investigate the electrode electrochemical performance under stress conditions, w... Lithium-ion batteries suffer from mechano–electrochemical coupling problems that directly determine the battery life. In this paper, we investigate the electrode electrochemical performance under stress conditions, where seven tensile/compressive stresses are designed and loaded on electrodes, thereby decoupling mechanics and electrochemistry through incremental stress loads. Four types of multi-group electrochemical tests under tensile/compressive stress loading and normal package loading are performed to quantitatively characterize the effects of tensile stress and compressive stress on cycle performance and the kinetic performance of a silicon composite electrode. Experiments show that a tensile stress improves the electrochemical performance of a silicon composite electrode, exhibiting increased specific capacity and capacity retention rate, reduced energy dissipation rate and impedances, enhanced reactivity, accelerated ion/electron migration and diffusion, and reduced polarization. Contrarily, a compressive stress has the opposite effect, inhibiting the electrochemical performance. The stress effect is nonlinear, and a more obvious suppression via compressive stress is observed than an enhancement via tensile stress. For example, a tensile stress of 675 k Pa increases diffusion coefficient by 32.5%, while a compressive stress reduces it by 35%. Based on the experimental results, the stress regulation mechanism is analyzed. Tensile stress loads increase the pores of the electrode material microstructure, providing more deformation spaces and ion/electron transport channels. This relieves contact compressive stress, strengthens diffusion/reaction, and reduces the degree of damage and energy dissipation. Thus, the essence of stress enhancement is that it improves and optimizes diffusion, reaction and stress in the microstructure of electrode material as well as their interactions via physical morphology. 展开更多
关键词 prestress loading silicon composite electrode tensile stress enhancement compressive stress suppression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部