By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence...By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.展开更多
Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulti...Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years’ mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application.展开更多
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ...The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.展开更多
With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focuse...With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.展开更多
Aiming at the rock burst prevention in coal mines,this study argue that a rock burst is the instability of the coal mass deformation system with the infinite deformation response subjected to a small disturbance,and t...Aiming at the rock burst prevention in coal mines,this study argue that a rock burst is the instability of the coal mass deformation system with the infinite deformation response subjected to a small disturbance,and the concepts of control,disturbance and response variables of the coal mass deformation system are proposed.The analytical solution of rock bursts of circular roadways is derived,using a mechanical model of the coal mass deformation system of circular roadways,and the stress and energy conditions of the disturbance response instability of a rock burst are also presented.Based on the disturbance response instability theory,this study identifies the factors controlling the occurrence of rock bursts,involving the coal uniaxial compressive strength,coal bursting liability and roadway support stress.The relationship between the critical stress and the critical resistance zone of surrounding rock in roadways,the coal uniaxial compressive strength,roadway support stress,roadway geometric parameters and coal burst liability is revealed,and the critical stress index evaluation method of rock burst risk is proposed.Considering the disturbance and response variables of rockburst occurrence,a monitoring system of rock burst based on stress and energy monitoring is established.Considering managing the disturbance and control variables,regional and local prevention measures of rock burst are proposed from four aspects:destressing in coal mass,avoiding the mutual disturbance between multi-group mining or excavation,reducing the dynamic load disturbance and weakening of the physical properties of the coal mass.Based on the enhancement principle of the roadway support stress on the critical load of rockburst occurrence and the energy absorption effect of the support,an energy absorption and anti-bursting support technology for roadways are proposed.The disturbance response instability theory of rock bursts has formed a technical system from the aspects of mechanism,prediction and prevention to guide the engineering practice for rock burst mitigation.展开更多
Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic ...Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic disasters,such as rock bursts,coal bursts,mine pressure bumps,and mine earthquakes.According to the occurrence mechanism of different types of dynamic disasters,we establish a compensation control theory based on excavation and mining effects.On the basis,we propose three key technologies:high prestress compensation technology for the roadway,pressure relief technology using directional roof cutting,and the goaf filling technology using broken rock dilation.These three technologies constitute the compensation control method for dynamic disasters in deep mines.Finally,this method was successfully applied in a deep coal mine with high stress,with monitored results suggesting its rationality.This work provides a new concept and control method for the prevention of rock dynamic disasters in deep mines.展开更多
基金Supported by the National Natural Science Foundation(Instrument)of China(50427401)the National High Technology Research and Development Program of China(2006AA06Z119)+1 种基金the National Key Technology R&D Program in 11th Five Years Plan of China(2007BA29B01)the New Century Excellent Talents in University(NCET-06-0477)
文摘By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.
基金Project R0903003 supported by the Research-Development Project of Poland
文摘Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years’ mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application.
基金National NaturalScience Foundation of China(52074151,52274085,52274123)Tiandi Science and Technology Co.,Ltd.Science and Technology Innovation Venture Capital Special Project(TDKC-2022-MS-01,TDKC-2022-QN-01,TDKC-2022-QN-02).
文摘The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.
基金supported by the Major Program of Shandong Provincial Natural Science Foundation(ZR2019ZD13)Project of Taishan Scholar in Shandong Province(No.tstp20221126)+1 种基金GUO Wei-yao was supported by the National Natural Science Foundation of China(52274086)Education System government-sponsored studyabroad program of Shandong Province.
文摘With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.
基金supported by the National Natural Science Foundation of China(51974150 and U1908222)National key research and development program(2022YFC3004605).
文摘Aiming at the rock burst prevention in coal mines,this study argue that a rock burst is the instability of the coal mass deformation system with the infinite deformation response subjected to a small disturbance,and the concepts of control,disturbance and response variables of the coal mass deformation system are proposed.The analytical solution of rock bursts of circular roadways is derived,using a mechanical model of the coal mass deformation system of circular roadways,and the stress and energy conditions of the disturbance response instability of a rock burst are also presented.Based on the disturbance response instability theory,this study identifies the factors controlling the occurrence of rock bursts,involving the coal uniaxial compressive strength,coal bursting liability and roadway support stress.The relationship between the critical stress and the critical resistance zone of surrounding rock in roadways,the coal uniaxial compressive strength,roadway support stress,roadway geometric parameters and coal burst liability is revealed,and the critical stress index evaluation method of rock burst risk is proposed.Considering the disturbance and response variables of rockburst occurrence,a monitoring system of rock burst based on stress and energy monitoring is established.Considering managing the disturbance and control variables,regional and local prevention measures of rock burst are proposed from four aspects:destressing in coal mass,avoiding the mutual disturbance between multi-group mining or excavation,reducing the dynamic load disturbance and weakening of the physical properties of the coal mass.Based on the enhancement principle of the roadway support stress on the critical load of rockburst occurrence and the energy absorption effect of the support,an energy absorption and anti-bursting support technology for roadways are proposed.The disturbance response instability theory of rock bursts has formed a technical system from the aspects of mechanism,prediction and prevention to guide the engineering practice for rock burst mitigation.
基金supported by the Natural Science Foundation of China(Nos.41941018,52074164,42077267,42277174,and 52204260)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic disasters,such as rock bursts,coal bursts,mine pressure bumps,and mine earthquakes.According to the occurrence mechanism of different types of dynamic disasters,we establish a compensation control theory based on excavation and mining effects.On the basis,we propose three key technologies:high prestress compensation technology for the roadway,pressure relief technology using directional roof cutting,and the goaf filling technology using broken rock dilation.These three technologies constitute the compensation control method for dynamic disasters in deep mines.Finally,this method was successfully applied in a deep coal mine with high stress,with monitored results suggesting its rationality.This work provides a new concept and control method for the prevention of rock dynamic disasters in deep mines.