The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ...The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.展开更多
With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focuse...With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.展开更多
基金National NaturalScience Foundation of China(52074151,52274085,52274123)Tiandi Science and Technology Co.,Ltd.Science and Technology Innovation Venture Capital Special Project(TDKC-2022-MS-01,TDKC-2022-QN-01,TDKC-2022-QN-02).
文摘The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.
基金supported by the Major Program of Shandong Provincial Natural Science Foundation(ZR2019ZD13)Project of Taishan Scholar in Shandong Province(No.tstp20221126)+1 种基金GUO Wei-yao was supported by the National Natural Science Foundation of China(52274086)Education System government-sponsored studyabroad program of Shandong Province.
文摘With the increasing depth of coal mining each year,rock burst has emerged as one of the most severe dynamic disasters in deep mining.The research status of rock burst prevention and control theory is summarized.Focused on deep coal mining,the major issues encountered in researching the prevention theory of rock bursts are summarized.Subsequently,the scientific connotation theory of stress relief-support reinforcement cooperative prevention and control of rock bursts in deep coal mines is proposed.Then,the mechanisms underlying the major research directions of the theory of stress relief-support reinforcement coordinated prevention and control and present a preliminarily theoretical framework for stress relief-support reinforcement coordinated prevention and control are outlined.To tackle the key scientific problems in the coordinated prevention and control of rock bursts on relief and support in deep mine,the in-depth research based on the synergetic theory is conducted.This involved exploring the principles of near-field coal mass stress relief,near-field roof andfloor stress relief,and anchor support.Additionally,the stress-energy evolution processes of the roadway near-field surrounding rock structure under various stress relief and anchor support modes be analyzed.Subsequently,a mechanical model for the optimized matching of stress relief surrounding rock and anchor support is established,with the control of the rock burst energy source at its core.Finally,the principle of collaborative prevention and control of deep mining rock burst stress relief and support from the perspectives of structural synergy,strength synergy,and stiffness synergy is elucidated.This insight is expected to provide theoretical support for the research and development of designs and techniques for deep mining rock burst prevention and control.