Numerous Quaternary deposits are existed in the mountainous areas of Southwest China,especially in the transition zone between the QinghaiTibet Plateau and the Sichuan Basin,where strong tectonic movements and frequen...Numerous Quaternary deposits are existed in the mountainous areas of Southwest China,especially in the transition zone between the QinghaiTibet Plateau and the Sichuan Basin,where strong tectonic movements and frequent climatic changes increase the potential landslides.The possible deformation and failure process of potential landslides and their impacts on the surrounding environment are important research topics.Field investigation and monitoring indicate that the Qingliu landslide in Xiameng town,Li County,Sichuan Province,China has been continuously deforming since August 2020.The deformation zone has a maximum deformation depth of approximately 18.9m,a total area of 54,628 m2,and a volume of 34.0×104 m3,which seriously threatens infrastructure projects and dwellings.As a result,understanding the Qingliu landslide evolution process,assessing the hazard risk,and planning disaster prevention measures are of great significance for reducing disaster loss.In this study,the mass movement process and hazard risk of the Qingliu landslide are evaluated,and the effects of different prevention measures are compared and discussed.By using the depth-integrated method,the mass movement of the Qingliu landslide is analyzed.The numerical simulation results indicate that the maximum velocity of the Qingliu landslide is approximately 37.5 m/s,and the duration of the landslide is approximately 90s.The simulated landslide can eventually form a deposited mass with a maximum deposit thickness of 19.4 m and an area of approximately 60,168.3 m2,thereby blocking the river and burying dwellings.Furthermore,a risk assessment of the Qingliu landslide under different forms of protection measures is also produced and discussed by considering the hazard level and economic vulnerability level of the affected area.Setting three layers of anti-slide piles on the deformation zone to reduce the hazard risk of the Qingliu landslide is a better choice.Our results may be useful for planning prevention measures and improving disaster emergency response systems.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P...The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.展开更多
Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci...Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.展开更多
Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would p...Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would pose a risk to the public as manifested by a death toll of 470 people due to landslides since the late 1940s.In 1977,the Government of the Hong Kong SAR embarked on a systematic programme,known as the Landslip Preventive Measure(LPM)Programme,to retroft substandard man-made slopes.From 1977 to 2010,about 4500 substandard government man-made slopes have been upgraded through engineering works.During the period,the Programme had evolved progressively in response to Government’s internal demand for continuous improvement and rising public expectation for slope safety.In 2010,the Government implemented the Landslip Prevention and Mitigation(LPMit)Programme to dovetail with the LPM Programme,with the focus on retroftting the remaining moderate-risk substandard man-made slopes and mitigating systematically the natural terrain landslide risk pursuant to the"react-to-known"hazard principle.This paper presents the evolution of the LPM and LPMit Programmes as well as the insight on landslide prevention and mitigation through engineering works.展开更多
An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China w...An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.展开更多
Landslides distribute extensively in Rongxian county, the southeast of Guangxi province, China and pose great threats to this county. At present, hazard management strategy is facing an unprecedented challenge due to ...Landslides distribute extensively in Rongxian county, the southeast of Guangxi province, China and pose great threats to this county. At present, hazard management strategy is facing an unprecedented challenge due to lack of a landslide susceptibility map. Therefore, the purpose of this paper was to construct a landslide susceptibility map by adopting three widely used models based on an integrated understanding of landslide’s characteristics.These models include a semi-quantitative method(SQM), information value model(IVM) and logistical regression model(LRM).The primary results show that(1) the county is classified into four susceptive regions, named as very low, low, moderate and high, which covered an area of 13.43%, 32.40%, 31.19% and 22.99% in SQM, 0.86%, 26.82%, 44.11%, and 28.21% in IVM, 9.88%, 17.73%, 46.36% and 26.03% in LRM;(2) landslides are likely to occur within the areas characterized by following obvious aspects: high intensity of human activities, slope angles of 25°~35°, the thickness of weathered soil is larger than 15 m; the lithology is granite, shale and mud rock;(3) the area under the curve of SQM, IVM and LRM is 0.7151, 0.7688 and 0.7362 respectively, and the corresponding success rate is 71.51%, 76.88% and 73.62%. It is concluded that these three models are acceptable because they have an effective capability of susceptibility assessment and can achieve an expected accuracy. In addition, the susceptibility outcome obtained from IVM provides a slightly higher quality than that from SQM, LRM.展开更多
The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of ...The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
基金the support of the National Natural Science Foundation of China(U2240221,41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(2020JDTD0006)the Sichuan Provincial International Science and Technology Collaboration&Innovation Project(2020YFH0092)。
文摘Numerous Quaternary deposits are existed in the mountainous areas of Southwest China,especially in the transition zone between the QinghaiTibet Plateau and the Sichuan Basin,where strong tectonic movements and frequent climatic changes increase the potential landslides.The possible deformation and failure process of potential landslides and their impacts on the surrounding environment are important research topics.Field investigation and monitoring indicate that the Qingliu landslide in Xiameng town,Li County,Sichuan Province,China has been continuously deforming since August 2020.The deformation zone has a maximum deformation depth of approximately 18.9m,a total area of 54,628 m2,and a volume of 34.0×104 m3,which seriously threatens infrastructure projects and dwellings.As a result,understanding the Qingliu landslide evolution process,assessing the hazard risk,and planning disaster prevention measures are of great significance for reducing disaster loss.In this study,the mass movement process and hazard risk of the Qingliu landslide are evaluated,and the effects of different prevention measures are compared and discussed.By using the depth-integrated method,the mass movement of the Qingliu landslide is analyzed.The numerical simulation results indicate that the maximum velocity of the Qingliu landslide is approximately 37.5 m/s,and the duration of the landslide is approximately 90s.The simulated landslide can eventually form a deposited mass with a maximum deposit thickness of 19.4 m and an area of approximately 60,168.3 m2,thereby blocking the river and burying dwellings.Furthermore,a risk assessment of the Qingliu landslide under different forms of protection measures is also produced and discussed by considering the hazard level and economic vulnerability level of the affected area.Setting three layers of anti-slide piles on the deformation zone to reduce the hazard risk of the Qingliu landslide is a better choice.Our results may be useful for planning prevention measures and improving disaster emergency response systems.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金supported by the second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the National Natural Science Foundation of China(Grant No.41941019)the National Natural Science Foundation of China(Grant NO.42307217)。
文摘The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.
基金the financial support for the research presented in this paper from National Natural Science Foundation of China(42201142,42067066,51778590)。
文摘Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.
文摘Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would pose a risk to the public as manifested by a death toll of 470 people due to landslides since the late 1940s.In 1977,the Government of the Hong Kong SAR embarked on a systematic programme,known as the Landslip Preventive Measure(LPM)Programme,to retroft substandard man-made slopes.From 1977 to 2010,about 4500 substandard government man-made slopes have been upgraded through engineering works.During the period,the Programme had evolved progressively in response to Government’s internal demand for continuous improvement and rising public expectation for slope safety.In 2010,the Government implemented the Landslip Prevention and Mitigation(LPMit)Programme to dovetail with the LPM Programme,with the focus on retroftting the remaining moderate-risk substandard man-made slopes and mitigating systematically the natural terrain landslide risk pursuant to the"react-to-known"hazard principle.This paper presents the evolution of the LPM and LPMit Programmes as well as the insight on landslide prevention and mitigation through engineering works.
基金Foundation item: Project(1220BAK10B06) supported by the National "Twelfth Five-Year" Plan for Science & Technology Support Program of China Project(20100101110026) supported by the PhD Programs Foundation of Ministry of Education of China Project(2009RS0050) supported by the Key Innovation Team Support Fund of Zhejiang Province, China
文摘An optimal drainage tunnel location determination method for landslide prevention was proposed to solve the existing problems in drainage tunnel construction. Current applications of drainage tunnel systems in China were reviewed and the fimctions of drainage tunnel were categorized as catchment and interception. Numerical simulations were conducted. The results show that both catchment and interception tunnels have variation of the function in the simulation of monolayer model, which shows the reduction of permeability condition in lower layer. The function of catchment can be observed in the deep slope, while the function of interception is observed near groundwater source. By using the slope safety factor and discharge water amount as the objectives of optimal drainage tunnel location, and pore-water pressure in fixed node and section flux as the judgment for construction quality of adjacent drainage tunnel, the design principle of drainage tunnel was introduced. The K103 Landslide was illustrated as an example to determine the optimal drainage tunnel location. The measured drainage tunnel efficiency was evaluated and compared with that from the numerical analyses based on groundwater data. The results validate the present numerical study.
基金funded by the National Natural Science Foundation of China (No. 51609041)the Natural Scientific Project of Guangxi Zhuang Autonomous Region (No. 2018GXNSFAA138187)+2 种基金the Project of the Education Department of Guangxi Zhuang Autonomous Region (No. 2018KY0027)the Project of Department of Land and Resources of Guangxi Zhuang Autonomous Region (GXZC2018G3-19302-JGYZ)the Project of Xi’an Geological survey center of China Geological survey (DD20189270)
文摘Landslides distribute extensively in Rongxian county, the southeast of Guangxi province, China and pose great threats to this county. At present, hazard management strategy is facing an unprecedented challenge due to lack of a landslide susceptibility map. Therefore, the purpose of this paper was to construct a landslide susceptibility map by adopting three widely used models based on an integrated understanding of landslide’s characteristics.These models include a semi-quantitative method(SQM), information value model(IVM) and logistical regression model(LRM).The primary results show that(1) the county is classified into four susceptive regions, named as very low, low, moderate and high, which covered an area of 13.43%, 32.40%, 31.19% and 22.99% in SQM, 0.86%, 26.82%, 44.11%, and 28.21% in IVM, 9.88%, 17.73%, 46.36% and 26.03% in LRM;(2) landslides are likely to occur within the areas characterized by following obvious aspects: high intensity of human activities, slope angles of 25°~35°, the thickness of weathered soil is larger than 15 m; the lithology is granite, shale and mud rock;(3) the area under the curve of SQM, IVM and LRM is 0.7151, 0.7688 and 0.7362 respectively, and the corresponding success rate is 71.51%, 76.88% and 73.62%. It is concluded that these three models are acceptable because they have an effective capability of susceptibility assessment and can achieve an expected accuracy. In addition, the susceptibility outcome obtained from IVM provides a slightly higher quality than that from SQM, LRM.
基金supported by the China Geological Survey Projects(Nos.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0904)。
文摘The dynamic effect is a very important issue widely debated by scholars when studying the genetic and disaster-causing mechanisms of earthquake-triggered landslides.First,the dynamic effect mechanism and phenomena of earthquake-triggered landslides were summarized in this paper.Then,the primary types of dynamic effects were further used to interpret the Mogangling landslide in Moxi Town of Luding County,China.A field investigation,remote sensing,numerical calculation and theoretical analysis were carried out to illustrate the failure mechanism of slope rock masses affected by earthquakes.The interaction between seismic waves and slope rock masses and the induced dynamic effect of slope rock masses were primarily accounted for in the analysis.The slope topography,rock mass weathering and unloading characteristics,river erosion,regional seismogenic structure,and rock mass structure characteristics were also discussed.The results showed that the formation of the Mogangling landslide was mainly related to the high amplification effect of seismic acceleration and back slope effects,interface dynamic stress effects,and double-sided slope effects of seismic waves caused by the catastrophic Ms 7.75 Moxi Earthquake in 1786.The principles for the site and route selection of large-scale infrastructure in the planning stage and the scientific prevention of seismic geological disasters were proposed on the basis of the dynamic effect of earthquake-induced landslides.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.