In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reac...In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10801090, 10726016,10771032)the Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No.T200809)
文摘In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.