期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Carbon Price Forecasting Approach Based on Multi-Scale Decomposition and Transfer Learning
1
作者 Xiaolong Zhang Yadong Dou +2 位作者 Jianbo Mao Wensheng Liu Hao Han 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期242-255,共14页
Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n... Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity. 展开更多
关键词 carbon emission trading price forecasting transfer learning gated recurrent unit
下载PDF
Analyses of Current Electricity Price and Its Changing Trend Forecast in the Coming Five Years
2
作者 黄少中 《Electricity》 2002年第2期5-8,共4页
This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period... This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period should satisfy the requirements of power industry restructuring.Therefore, it is necessary to set up an appropriate pricing mechanism and system including thelinks of sales price to network, transmission and distribution price (T&D price) and sales price.In the light of various factors influencing increase and decrease in price, a forecast of electricitytariff is given in the five years to come.[ 展开更多
关键词 current electricity price electricity price forecasting sales price to network T&Dprice sales price
下载PDF
Research on Hybrid Model of Garlic Short-term Price Forecasting based on Big Data 被引量:3
3
作者 Baojia Wang Pingzeng Liu +5 位作者 Zhang Chao Wang Junmei Weijie Chen Ning Cao Gregory MPO’Hare Fujiang Wen 《Computers, Materials & Continua》 SCIE EI 2018年第11期283-296,共14页
Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting gar... Garlic prices fluctuate dramatically in recent years and it is very difficult to predict garlic prices.The autoregressive integrated moving average(ARIMA)model is currently the most important method for predicting garlic prices.However,the ARIMA model can only predict the linear part of the garlic prices,and cannot predict its nonlinear part.Therefore,it is urgent to adopt a method to analyze the nonlinear characteristics of garlic prices.After comparing the advantages and disadvantages of several major prediction models which used to forecast nonlinear time series,using support vector machine(SVM)model to predict the nonlinear part of garlic prices and establish ARIMA-SVM hybrid forecast model to predict garlic prices.The monthly average price data of garlic in 2010-2017 was used to test the effect of ARIMA model,SVM model and ARIMA-SVM model.The experimental results show that:(1)Garlic price is affected by many factors but the most is the supply and demand relationship;(2)The SVM model has a good effect in dealing with the nonlinear relationship of garlic prices;(3)The ARIMA-SVM hybrid model is better than the single ARIMA model and SVM model on the accuracy of garlic price prediction,it can be used as an effective method to predict the short-term price of garlic. 展开更多
关键词 price forecast machine learning hybrid model GARLIC
下载PDF
Week Ahead Electricity Power and Price Forecasting Using Improved DenseNet-121 Method 被引量:2
4
作者 Muhammad Irfan Ali Raza +10 位作者 Faisal Althobiani Nasir Ayub Muhammad Idrees Zain Ali Kashif Rizwan Abdullah Saeed Alwadie Saleh Mohammed Ghonaim Hesham Abdushkour Saifur Rahman Omar Alshorman Samar Alqhtani 《Computers, Materials & Continua》 SCIE EI 2022年第9期4249-4265,共17页
In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.... In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively. 展开更多
关键词 Smart grid deep neural networks consumer demand big data analytics load forecasting price forecasting
下载PDF
Forecast on Price of Agricultural Futures in China Based on ARIMA Model 被引量:6
5
作者 Chunyang WANG 《Asian Agricultural Research》 2016年第11期9-12,16,共5页
The forecast on price of agricultural futures is studied in this paper. We use the ARIMA model to estimate the price trends of agricultural futures,which can help the investors to optimize their investing plans. The s... The forecast on price of agricultural futures is studied in this paper. We use the ARIMA model to estimate the price trends of agricultural futures,which can help the investors to optimize their investing plans. The soybean future contracts are taken as an example to simulate the forecast based on the auto-regression coefficient(p),differential times(d) and moving average coefficient(q). The results show that ARIMA model is better to simulate and forecast the trend of closing prices of soybean futures contract,and it is applicable to forecasting the price of agricultural futures. 展开更多
关键词 price of agricultural futures ARIMA model Short-term forecast of price
下载PDF
Forecasting Winning Bid Prices in an Online Auction Market - Data Mining Approaches 被引量:1
6
作者 KIM Hongil BAEK Seung 《Journal of Electronic Science and Technology of China》 2004年第3期6-11,共6页
To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural ne... To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression. 展开更多
关键词 Bayesian network data mining neural network price forecasting
下载PDF
Forecasting Tesla’s Stock Price Using the ARIMA Model 被引量:1
7
作者 Qiangwei Weng Ruohan Liu Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期38-45,共8页
The stock market is an important economic information center.The economic benefits generated by stock price prediction have attracted much attention.Although the stock market cannot be predicted accurately,the stock m... The stock market is an important economic information center.The economic benefits generated by stock price prediction have attracted much attention.Although the stock market cannot be predicted accurately,the stock market’s prediction of the trend of stock prices helps in grasping the operation law of the stock market and the influence mechanism on the economy.The autoregressive integrated moving average(ARIMA)model is one of the most widely accepted and used time series forecasting models.Therefore,this paper first compares the return on investment(ROI)of Apple and Tesla,revealing that the ROI of Tesla is much greater than that of Apple,and subsequently focuses on ARIMA model’s prediction on the available time series data,thus concluding that the ARIMA model is better than the Naïve method in predicting the change in Tesla’s stock price trend. 展开更多
关键词 Stock price forecast ARIMA model Naïve method TESLA
下载PDF
SVR-Boosting ensemble model for electricity price forecasting in electric power market
8
作者 周佃民 高琳 +1 位作者 管晓宏 高峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期90-94,共5页
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic... A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability. 展开更多
关键词 electricity price forecasting support vector regression boosting algorithm ensemble model gen-eralization capability
下载PDF
Energy Price Forecasting Through Novel Fuzzy Type-1 Membership Functions
9
作者 Muhammad Hamza Azam Mohd Hilmi Hasan +2 位作者 Azlinda A Malik Saima Hassan Said Jadid Abdulkadir 《Computers, Materials & Continua》 SCIE EI 2022年第10期1799-1815,共17页
Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to ... Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted. 展开更多
关键词 Fuzzy logic fuzzy C-means type-1 fuzzy membership function electricity price forecasting
下载PDF
An Advanced Approach for Improving the Prediction Accuracy of Natural Gas Price
10
作者 Quanjia Zuo Fanyi Meng Yang Bai 《Energy Engineering》 EI 2021年第2期303-322,共20页
As one of the most important commodity futures,the price forecasting of natural gas futures is of great signifi-cance for hedging and risk aversion.This paper mainly focuses on natural gas futures pricing which consid... As one of the most important commodity futures,the price forecasting of natural gas futures is of great signifi-cance for hedging and risk aversion.This paper mainly focuses on natural gas futures pricing which considers seasonalityfluctuations.In order to study this issue,we propose a modified approach called six-factor model,in which the influence of seasonalfluctuations are eliminated in every random factor.Using Monte Carlo method,wefirst assess and comparative analyze thefitting ability of three-factor model and six-factor model for the out of sample data.It is found that six-factor model has better performance than three-factor model and natural gas futures prices is strongly influenced by winter effect.We then apply the proposed model to predict the price of natural gas futures in the year 2019.It is found that natural gas prices have a weak upward trend in the coming year and are relatively volatile in winter. 展开更多
关键词 Natural gas futures price forecasting six-factor model Monte Carlo method SEASONALITY
下载PDF
An Application of Decision Trees Algorithm to Project Hourly Electricity Spot Price as Support for Decision Making on Electricity Trading in Brazil
11
作者 Cosme Rodolfo R. dos Santos Roberto Castro Rafael Marques 《Energy and Power Engineering》 CAS 2022年第8期327-342,共16页
Estimating the price of a financial asset or any tradable product is a complex task that depends on the availability of a reasonable amount of data samples. In the Brazilian electricity market environment, where spot ... Estimating the price of a financial asset or any tradable product is a complex task that depends on the availability of a reasonable amount of data samples. In the Brazilian electricity market environment, where spot prices are centrally calculated by computational models, the projection of hourly energy prices at the spot market is essential for decision-making, and with the particularities of this sector, this task becomes even more complex due to the stochastic behavior of some variables, such as the inflow to hydroelectric power plants and the correlation between variables that affect electricity generation, traditional statistical techniques of time series forecasting present an additional complexity when one tries to project scenarios of spot prices on different time horizons. To address these complexities of traditional forecasting methods, this study presents a new approach based on Machine Learning methodology applied to the electricity spot prices forecasting process. The model’s Learning Base is obtained from public information provided by the Brazilian official computational models: NEWAVE, DECOMP, and DESSEM. The application of the methodology to real cases, using back-testing with actual information from the Brazilian electricity sector demonstrates that the research is promising, as the adherence of the projections with the realized values is significant. 展开更多
关键词 Artificial Intelligence Machine Learning price Estimation Energy Planning Spot Electricity Market Spot prices Forecast
下载PDF
Trinomial tree model of the real options approach used in mining investment price forecast and analysis
12
作者 Qing-Hua GU Qiong WU Cai-Wu LU 《Journal of Coal Science & Engineering(China)》 2013年第4期573-577,共5页
In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybde... In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybdenum ore as an example, a theoretical model for the hurdle price under the optimal investment timing is constructed. Based on the example data, the op- tion price model is simulated. By the model, mine investment price can be computed and forecast effectively. According to the characteristics of mine investment, cut-off grade, reserve estimation and mine life in different price also can be quantified. The result shows that it is reliable and practical to enhance the accuracy for mining investment decision. 展开更多
关键词 real option approach (ROA) trinomial tree model hurdle price price forecast
下载PDF
Short-Term and Long-Term Price Forecasting Models for the Future Exchange of Mongolian Natural Sea Buckthorn Market
13
作者 Yalalt Dandar Liu Chang 《Agricultural Sciences》 2022年第3期467-490,共24页
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ... Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market. 展开更多
关键词 Short-Term and Long-Term price Forecasting Models Simultaneous System Equation VECM Sea Buckthorn Mongolia
下载PDF
Stock Price Forecasting with Artificial Neural Networks Long Short-Term Memory: A Bibliometric Analysis and Systematic Literature Review
14
作者 Cristiane Orquisa Fantin Eli Hadad 《Journal of Computer and Communications》 2022年第12期29-50,共22页
This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock p... This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models. 展开更多
关键词 Stock price Forecasting Long-Term Memory Backpropagation Bibliometric Analysis Systematic Review
下载PDF
A Model Average Algorithm for Housing Price Forecast with Evaluation Interpretation
15
作者 Jintao Fu Yong Zhou +2 位作者 Qian Qiu Guangwei Xu Neng Wan 《Journal of Quantum Computing》 2022年第3期147-163,共17页
In the field of computer research,the increase of data in result of societal progress has been remarkable,and the management of this data and the analysis of linked businesses have grown in popularity.There are numero... In the field of computer research,the increase of data in result of societal progress has been remarkable,and the management of this data and the analysis of linked businesses have grown in popularity.There are numerous practical uses for the capability to extract key characteristics from secondary property data and utilize these characteristics to forecast home prices.Using regression methods in machine learning to segment the data set,examine the major factors affecting it,and forecast home prices is the most popular method for examining pricing information.It is challenging to generate precise forecasts since many of the regression models currently being utilized in research are unable to efficiently collect data on the distinctive elements that correlate y with a high degree of house price movement.In today’s forecasting studies,ensemble learning is a very prevalent and well-liked study methodology.The regression integration computation of large housing datasets can use a lot of computer resources as well as computation time,and ensemble learning uses more resources and calls for more machine support in integrating diverse models.The Average Model suggested in this paper uses the concept of fusion to produce integrated analysis findings from several models,combining the best benefits of separate models.The Average Model has a strong applicability in the field of regression prediction and significantly increases computational efficiency.The technique is also easier to replicate and very effective in regression investigations.Before using regression processing techniques,this work creates an average of different regression models using the AM(Average Model)algorithm in a novel way.By evaluating essential models with 90%accuracy,this technique significantly increases the accuracy of house price predictions.The experimental results show that the AM algorithm proposed in this paper has lower prediction error than other comparison algorithms,and the prediction accuracy is greatly improved compared with other algorithms,and has a good experimental effect in house price prediction. 展开更多
关键词 Machine learning AM algorithm price forecast regression algorithm Model evaluation
下载PDF
A Look-Ahead Method for Forecasting the Concrete Price
16
作者 Qing Liu Minghao Huang Woon-Seek Lee 《Journal of Applied Mathematics and Physics》 2022年第5期1859-1871,共13页
Price movement of building materials increases the uncertainty of architectural planning. As a basic building material, commercial concrete is an important part of various construction costs. It is of great significan... Price movement of building materials increases the uncertainty of architectural planning. As a basic building material, commercial concrete is an important part of various construction costs. It is of great significance to predict its price change trend in advance. In this paper, a univariate autoregressive series is constructed based on the daily average price of concrete in major cities in China;then it uses a combined model of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) to extract the spatial and temporal rules of time series, to achieve accurate prediction of the trend of concrete price changes 10 days ago. The prediction accuracy rate of the model is 97.13%, and the precision, recall rate, and F1 score are: 97.15%, 97.27%, and 97.20%, respectively. The prediction result is of great significance to various architectural planning. 展开更多
关键词 price Forecasting CONCRETE Deep Learning AUTOREGRESSION
下载PDF
Electricity Price Forecasting Based on AOSVR and Outlier Detection
17
作者 ZhouDianmin GaoLin GaoFeng 《Electricity》 2005年第2期23-26,共4页
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It ... Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market 展开更多
关键词 electric power market electricity price forecasting AOSVR outlier detection
下载PDF
Lower Cotton Price Forecast Released
18
《China Textile》 2009年第2期20-20,共1页
Based on current supply anddemand projections, ICAC has re-duced the forecast of the season-average Cotlook A Index in 2008/09from 68 U.S. cents per pound
关键词 ICAC World Lower Cotton price Forecast Released SMU
下载PDF
A Temporal Convolutional Network Based Hybrid Model for Short-term Electricity Price Forecasting 被引量:1
19
作者 Haoran Zhang Weihao Hu +3 位作者 Di Cao Qi Huang Zhe Chen Frede Blaabjerg 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1119-1130,共12页
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio... Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods. 展开更多
关键词 Autoregressive integrated moving average model electricity price forecasting empirical mode decomposition temporal convolutional network
原文传递
A Hybrid Channel Stock Model for Stock Price Forecasting with Multifaceted Feature Fusion
20
作者 Zhiyu Xu Yong Wang +2 位作者 Yisheng Li Lulu Zhang Bin Jiang 《Data Intelligence》 EI 2024年第3期792-811,共20页
Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we ... Stock market is volatile and predicting stock prices is a challenging task.Stock prices are influenced by multiple factors,and prediction using only numerical or image features is ineffective.To solve this problem,we propose a Hybrid Channel Stock model that incorporates multiple features of basic stock data,K-line charts and technical indicator factors for predicting the closing price of a stock on day n+1.The model combines multiple aspects of data and uses a multi-channel structure including improved CNN-TW,bidirectional LSTM and Transformer network.First,we construct the multi-channel branches of the multi-faceted feature fusion input network model;second,in this paper,we will use the concatenate method to stitch the output of each branch as the input of the rest of the network;the last layer in the network is the fully connected layer,which combines the linear activation function regression to output the predicted prices.Finally,we conducted extensive experiments on the Dow 30,SSH 50 and CSI100 indices.The experimental results show that the Hybrid Channel Stock method has the best performance with the smallest MSE,RMSE,MAE and MAPE compared with existing models.in addition,the experiments on different trading days validate the stability and effectiveness of the model,providing an important reference for investors to make stock investment decisions. 展开更多
关键词 Stock price Forecast Hybrid Channel Stock model CNN-TW MULTI-CHANNEL Multifaceted feature
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部