On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding t...On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.展开更多
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T...Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
基金This work was financially supported by the National Nat-ural Science Foundation of China(Nos.51634001,51774023,and 51904019).
文摘On the basis of the massive amount of published literature and the long-term practice of our research group in the field of prevention and control of rockburst,the research progress and shortcomings in understanding the rockburst phenomenon have been comprehensively in-vestigated.This study focuses on the occurrence mechanism and monitoring and early warning technology for rockburst in coal mines.Results showed that the prevention and control of rockburst had made significant progress.However,with the increasing mining depth,several unre-solved concerns remain challenging.From the in-depth research and analysis,it can be inferred that rockburst disasters involve three main problems,i.e.,the induction factors are complicated,the mechanism is still unclear,and the accuracy of the monitoring equipment and multi-source stereo monitoring technology is insufficient.The monitoring and warning standards of rockburst need to be further clarified and im-proved.Combined with the Internet of Things,cloud computing,and big data,a study of the trend of rockburst needs to be conducted.Further-more,the mechanism of multiphase and multi-field coupling induced by rockburst on a large scale needs to be explored.A multisystem and multiparameter integrated monitoring and early warning system and remote monitoring cloud platform for rockburst should be explored and developed.High-reliability sensing technology and equipment and perfect monitoring and early warning standards are considered to be the de-velopment direction of rockburst in the future.This research will help experts and technicians adopt effective measures for controlling rock-burst disasters.
基金financially supported by the National Natural Science Foundation of China(Nos.52011530037 and 51904019)。
文摘Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.