期刊文献+
共找到97,342篇文章
< 1 2 250 >
每页显示 20 50 100
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
1
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery Zinc anode Zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Phase-field lattice-Boltzmann study on fully coupled thermal-solute-convection dendrite growth of Al-Cu alloy
2
作者 Yin-qi Qiu Meng-wu Wu +1 位作者 Xun-peng Qin Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第2期125-136,共12页
Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al... Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed. 展开更多
关键词 simulation phase field dendrite growth thermal-solute-convection interaction
下载PDF
Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000 h
3
作者 Lu Wang Feifei Wang +5 位作者 Zhe Ding Yingxin Liu Ziyi Zhang Chunpeng Yang Kian Ping Loh Quan-Hong Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期771-776,共6页
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z... Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries. 展开更多
关键词 Zn battery Bilayer separator Butter paper Zn metal anode Zn dendrite
下载PDF
Unveiling the influence of dendrite characteristics on the slip/twinning activity and the strain hardening capacity of Mg-Sn-Li-Zn cast alloys 被引量:1
4
作者 MS.Jalali A.Zarei-Hanzaki +5 位作者 M.Mosayebi H.R.Abedi M.Malekan M.Kahnooji E.Farabi Su-Hyeon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期329-347,共19页
This work explores the correlation between the characteristics of the cast structure(dendrite growth pattern,dendrite morphology and macro-texture)and strain hardening capacity during high temperature deformation of M... This work explores the correlation between the characteristics of the cast structure(dendrite growth pattern,dendrite morphology and macro-texture)and strain hardening capacity during high temperature deformation of Mg-5Sn-0.3Li-0 and 3Zn multi-component alloys.The three dimensional(3D)morphology of the dendrite structure demonstrates the transition of the growth directions from<1123>,<1120>and<1122>to<1123>and<1120>due to the addition of Zn.The simultaneous effects of growing tendency and the decrement of dendrite coarsening rate at the solidification interval lead to dendrite morphology transition from the globular-like to the hyper-branch structure.This morphology transition results in the variation of the solidification macro-texture,which has effectively influenced the dominant deformation mechanisms(slip/twin activity).The higher activity of the slip systems increases the tendency of the dendrite arms for bending along the deformation direction and fragmentation.Apart from this,the dendrite holding hyper-branch structure with an average thickness below 20μm are more favorable for fragmentation.The dendrite fragmentation leads to considerable softening fractions,and as an effective strain compensation mechanism increases the workability of dendritic structure. 展开更多
关键词 Magnesium alloys dendrite orientation selection Solidification texture dendrite fragmentation 3-D tomography analysis Thermomechanical processing
下载PDF
Simulation of inclined dendrites under natural convection by KKS phase field model based on CUDA 被引量:1
5
作者 Chang-sheng Zhu Tian-yu Li +2 位作者 Bo-rui Zhao Cang-long Wang Zi-hao Gao 《China Foundry》 SCIE CAS CSCD 2023年第5期432-442,共11页
In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low seria... In this work,Al-4.5wt.%Cu was selected as the research object,and a phase field-lattice Boltzmann method(PF-LBM)model based on compute unified device architecture(CUDA)was established to solve the problem of low serial computing efficiency of a traditional CPU and achieve significant acceleration.This model was used to explore the evolution of dendrite growth under natural convection.Through the study of the tip velocities,it is found that the growth of the dendrite arms at the bottom is inhibited while the growth of the dendrite arms at the top is promoted by natural convection.In addition,research on the inclined dendrite under natural convection was conducted.It is observed that there is a deviation between the actual growth direction and the preferred angle of the inclined dendrite.With the increase of the preferred angle of the seed,the difference between the actual growth direction and the initial preferred angle of the inclined dendrite shows a trend of increasing at first and then decreasing.In the simulation area,the relative deflection directions of the primary dendrite arms in the top right corner and the bottom left corner of the same dendrite are almost counterclockwise,while the relative deflection directions of the other two primary dendrite arms are clockwise. 展开更多
关键词 PF-LBM natural convection inclined dendrites CUDA
下载PDF
Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries 被引量:1
6
作者 Zixin Guo Siguo Yang +5 位作者 Wenyang Zhao Shenghui Wang Jiong Liu Zhichao Ma Hongwei Zhao Luquan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期497-506,I0014,共11页
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d... The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode. 展开更多
关键词 Overdischarge Cu dendrites Mechanical properties NANOINDENTATION Micron scratch
下载PDF
Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation 被引量:1
7
作者 Cheng Yao Min Wang +5 位作者 Youjin Ni Dazhi Wang Haibo Zhang Lidong Xing Jian Gong Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1716-1728,共13页
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib... The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break. 展开更多
关键词 high-strength steel traveling-wave magnetic field dendrite growth numerical simulation
下载PDF
Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb-26wt.%Bi hypo-peritectic alloy 被引量:2
8
作者 HU Xiaowu YAN Hong +2 位作者 CHEN Wenjing LI Shuangming FU Hengzhi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期424-431,共8页
The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the pr... The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted. 展开更多
关键词 lead bismuth alloys dendrite arm spacing directional solidification dendriteS
下载PDF
Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy
9
作者 陈伟鹏 侯华 +2 位作者 张云涛 柳伟 赵宇宏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期616-622,共7页
Parameter calculation and result storage, as two necessary steps in phase-field simulation play an important role in ensuring the accuracy of simulation results. A strategy of parameter calculation and result storage ... Parameter calculation and result storage, as two necessary steps in phase-field simulation play an important role in ensuring the accuracy of simulation results. A strategy of parameter calculation and result storage is presented for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy under isothermal solidification. Based on the phase diagram and empirical formulas, key parameters of the phase-field model, such as equilibrium partition coefficient k, liquidus slope m, solutal diffusion coefficient in liquid Dl, and solutal diffusion coefficient in solid Ds, can be obtained.Both structured grid method and structured point method can be used to store simulation results, but using the latter method will reduce about 60% storage space and 37.5% storage time compared with the former. Finally, convergent simulation results of α-Mg dendrite growth are obtained and they are in good agreement with the experimental results about optical micrograph, which verify the accuracy of parameters and stability of storage method. 展开更多
关键词 parameter calculation result storage phase-field method dendrite growth
下载PDF
Effect of sample diameter on primary dendrite spacing of directionally solidified Al-4%Cu alloy 被引量:4
10
作者 屈敏 刘林 +2 位作者 唐峰涛 张军 傅恒志 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第1期1-8,共8页
The relationship between primary dendrite arm spacing and sample diameter was studied during directional solidification for Al-4%Cu (mass fraction) alloy. It is shown that primary dendrite spacing is decreased with th... The relationship between primary dendrite arm spacing and sample diameter was studied during directional solidification for Al-4%Cu (mass fraction) alloy. It is shown that primary dendrite spacing is decreased with the decrease of the sample diameter at given growth rate. By regressing the relationship between primary dendrite arm spacing and the growth rate, the primary dendrite arm spacing complies with 461.76v-0.53, 417.92v-0.28 and 415.83v-0.25 for the sample diameter of 1.8, 3.5 and 7.2 mm, respectively. The primary dendrite spacing, growth rate and thermal gradient for different sample diameters comply with 28.77v-0.35G-0.70, 23.17v-0.35G-0.70 and 23.84v-0.35G-0.70, respectively. They are all consistent with the theoretical model λ1 =k b v-a1G-b1, and b1/a1=2. By analyzing the experimental results with classical models, it is shown that KURZ-FISHER model fits for the primary dendrite spacing in smaller sample diameters with weaker thermosolute convection. Whereas TRIVEDI model is suitable for describing primary dendrite arm spacing with a larger diameter (d>2 mm) where convection should be considered. 展开更多
关键词 AL-CU合金 定向凝固 间距调整机制 实验
下载PDF
Chemical surface tuning of zinc metal anode toward stable,dendrite-less aqueous zinc-ion batteries
11
作者 Pranav Kulkarni Sun-Sik Kim Hyun Young Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期1-8,I0001,共9页
The commercialization of Zn batteries is confronted with urgent challenges in the metal anode,such as dendrite formation,capacity loss,and cracking or dissolution.Here,surface interfacial engineering of the Zn anode i... The commercialization of Zn batteries is confronted with urgent challenges in the metal anode,such as dendrite formation,capacity loss,and cracking or dissolution.Here,surface interfacial engineering of the Zn anode is introduced for achieving safety and dendritic-free cycling for high-performance aqueous Zn batteries through a simple but highly effective chemical etching-substitution method.The chemical modification induces a rough peak-valley surface with a thin fluorine-rich interfacial layer on the Zn anode surface,which regulates the growth orientation via guiding uniform Zn plating/stripping,significantly enhances accessibility to aqueous electrolytes and improves wettability by reducing surface energy.As a result,such a synergetic surface effect enables uniform Zn plating/stripping with low polarization of 29 m V at a current density of 0.5 m A cm^(-2) with stable cyclic performance up to 1000 h.Further,a full cell composed of a fluorine-substituted Zn anode coupled with aβ-MnO_(2)or Ba-V_(6)O_(13)cathode demonstrates improved capacity retention to 1000 cycles compared to the pristine-Zn cells.The proposed valley deposition model provides the practical direction of surface-modified interfacial chemistries for improving the electrochemical properties of multivalent metal anodes via surface tuning. 展开更多
关键词 dendrite free Peak-Valley surface Zinc-ion batteries Surface modification Fluorinated interface
下载PDF
Influence of directional solidification variables on primary dendrite arm spacing of Ni-based superalloy DZ125 被引量:3
12
作者 Zhang Weiguo Liu Lin Huang Taiwen Zhao Xinbao Qu Min Yu Zhuhuan Fu Hengzhi 《China Foundry》 SCIE CAS 2009年第4期300-304,共5页
The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm.The results reveal that the primary dendrite arm spacing ... The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm.The results reveal that the primary dendrite arm spacing decreases from 94μm to 35.8μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s.The regression equation of the primary dendrite arm spacingsλ 1 versus cooling rate is λ 1 =0.013(GV)-0.32.The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data.The influence of directional solidi fication rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated. 展开更多
关键词 枝晶臂间距 镍基高温合金 定向凝固 冷却速度 凝固过程 回归方程 实验数据 热梯度
下载PDF
The mechanism of external pressure suppressing dendrites growth in Li metal batteries
13
作者 Genming Lai Yunxing Zuo +8 位作者 Junyu Jiao Chi Fang Qinghua Liu Fan Zhang Yao Jiang Liyuan Sheng Bo Xu Chuying Ouyang Jiaxin Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期489-494,共6页
Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern ca... Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern caused by Li dendrites growth.Despite the fact that many recent experimental studies found that external pressure suppresses the Li dendrites growth,the mechanism of the external pressure effect on Li dendrites remains poorly understood on the atomic scale.Herein,the large-scale molecular dynamics simulations of Li dendrites growth under different external pressure were performed with a machine learning potential,which has the quantum-mechanical accuracy.The simulation results reveal that the external pressure promotes the process of Li self-healing.With the increase of external pressure,the hole defects and Li dendrites would gradually fuse and disappear.This work provides a new perspective for understanding the mechanism for the impact of external pressure on Li dendrites. 展开更多
关键词 Li metal Machine learning potential Molecular dynamic simulation dendrite External pressure
下载PDF
Emerging Carbon Nanotube-Based Nanomaterials for Stable and Dendrite-Free Alkali Metal Anodes:Challenges,Strategies,and Perspectives
14
作者 Zhongxiu Liu Yong Liu +6 位作者 Yingjie Miao Guilong Liu Renhong Yu Kunming Pan Guangxin Wang Xinchang Pang Jianmin Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期50-72,共23页
Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual app... Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed. 展开更多
关键词 alkali metal anodes carbon nanotube dendrite free electrochemical performance NANOMATERIALS
下载PDF
Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes
15
作者 Yu YeXinyan Ye Haoxian Zhu +3 位作者 Juncao Bian Haibin Lin Jinlong Zhu Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期62-69,I0003,共9页
Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-... Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-rich anti-perovskite(Li RAP)materials have drawn the most interest because of high theoretical Li^(+)conductivity,low cost and easy processing.Although solid-state electrolytes are believed to have the potential to physically inhibit the lithium dendrite growth,lithium-metal batteries still suffer from the lithium dendrite growth and thereafter the short circuiting.The voids in practical Li RAP pellets are considered as the root cause.Herein,we show that reducing the voids can effectively suppress the lithium dendrite growth.The voids in the pellet resulted in an irregular Li^(+)flux distribution and a poor interfacial contact with lithium metal anode;and hence the ununiform lithium dendrites.Consequently,the lithium-metal symmetric cell with void-reduced Li_(2)OHCl-HT pellet was able to display excellent cycling performance(750 h at 0.4 m A cm^(-2))and stability at high current density(0.8 m A cm^(-2)for 120 h).This study provides not only experimental evidence for the impact of the voids in Li RAP pellets on the lithium dendrite growth,but also a rational pellet fabrication approach to suppress the lithium dendrite growth. 展开更多
关键词 Llithium-rich anti-perovskite Solid-state electrolytes Void-reduced pellets Lithium dendrites Lithium metal anodes
下载PDF
Experience of primary intestinal lymphangiectasia in adults: Twelve case series from a tertiary referral hospital 被引量:1
16
作者 Ji Eun Na Ji Eun Kim +4 位作者 Sujin Park Eun Ran Kim Sung Noh Hong Young-Ho Kim Dong Kyung Chang 《World Journal of Clinical Cases》 SCIE 2024年第4期746-757,共12页
BACKGROUND While primary intestinal lymphangiectasia(PIL)is considered a rare condition,there have been several reported cases in adults.Nevertheless,the absence of clear guidance from diagnosis to treatment and progn... BACKGROUND While primary intestinal lymphangiectasia(PIL)is considered a rare condition,there have been several reported cases in adults.Nevertheless,the absence of clear guidance from diagnosis to treatment and prognosis poses challenges for both physicians and patients.AIM To enhance understanding by investigating clinical presentation,diagnosis,treatment,complications,and prognoses in adult PIL cases.METHODS We enrolled adult patients diagnosed with PIL between March 2016 and September 2021.The primary outcome involved examining the diagnosis and treatment process of these patients.The secondary outcomes included identifying complications(infections,thromboembolism)and assessing prognoses(frequency of hospitalization and mortality)during the follow-up period.RESULTS Among the 12 included patients,peripheral edema(100%)and diarrhea(75%)were the main presenting complaints.Laboratory tests showed that all the pati-ents exhibited symptoms of hypoalbuminemia and hypogammaglobulinemia.Radiologically,the predominant findings were edema of the small intestine(67%)and ascites(58%).The typical endoscopic finding with a snowflake appearance was observed in 75%of patients.Among the 12 patients,two responded positive-ly to octreotide and sirolimus,and eight who could undergo maintenance therapy discontinued subsequently.Complications due to PIL led to infection in half of the patients,thromboembolism in three patients,and one death.CONCLUSION PIL can be diagnosed in adults across various age groups,with different severity and treatment responses among patients,leading to diverse complications and prognoses.Consequently,tailored treatments will be necessary.We anticipate that our findings will contribute to the management of PIL,an etiology of protein-losing enteropathy. 展开更多
关键词 primary intestinal lymphangiectasia in adults Protein-losing enteropathy Diagnosis Treatment PROGNOSIS
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
17
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases NEURONS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury
18
作者 Mi Li Jiawei Xu +10 位作者 Ying Zou Jialing Lu Aiyue Ou Xinrui Ma Jiaqi Zhang Yizhou Xu Lanya Fu Jingmin Liu Xianghai Wang Libing Zhou Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2757-2761,共5页
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be... Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury. 展开更多
关键词 brachial plexus conditional knockout DEGENERATION dendriteS motor neuron peripheral nerve injury REGENERATION RHOA spinal cord ventral horn
下载PDF
Model of Primary Austenite Dendrite Structure in Hypoeutectic Cast Iron
19
作者 WU Xu-min YU Xiao-hua +1 位作者 XU Jun ZHANG You-ling 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2003年第1期33-35,共3页
The solidification of primary austenite in hypocutcctic gray cast iron was studied by stepped grinding and quantitative metallography.The dendrite structure of primary austenite can be described by three models:typica... The solidification of primary austenite in hypocutcctic gray cast iron was studied by stepped grinding and quantitative metallography.The dendrite structure of primary austenite can be described by three models:typical dendrite crystal model,metamorphic dendrite crystal model and network dendrite crystal model.The dendrite crystals formed according to 3rd model is much more than those formed according to other models in this experiment.The primary austenites are connected each other,and the primary stems of austenite could be regarded as secondary arms and vice versa. 展开更多
关键词 hypoeutectic cast iron primary austenite dendrite structure
下载PDF
Overall clinical course of indeterminate dendritic cell tumor patients without skin lesions:A rare case report
20
作者 Hao Liang Yun-Fei Zhao +1 位作者 Liu-Ping Zhang Ya-Kun Wu 《World Journal of Clinical Cases》 SCIE 2024年第19期4022-4028,共7页
BACKGROUND Indeterminate dendritic cell tumor(IDCT)is a rare tumor of immune cells,and IDCT patients without skin lesions are rarely reported.Therefore,the clinical course in this type of patient is unclear,and furthe... BACKGROUND Indeterminate dendritic cell tumor(IDCT)is a rare tumor of immune cells,and IDCT patients without skin lesions are rarely reported.Therefore,the clinical course in this type of patient is unclear,and further research on the underlying pathological mechanisms and appropriate treatments is needed.CASE SUMMARY This study describes a female IDCT patient with bile duct lesions.The strong mimicry of IDCT lesions confused doctors,and consequently,this patient,who had no skin lesions,was first diagnosed with cholangiocarcinoma.Then,she presented with persistent abdominal distension without jaundice.Enlarged mesenteric lymph nodes along with massive ascites were observed in the subsequent imaging examination.However,no tumor cells or pathogens were found in the three subsequent ascites analyses.It took 2 years to reach the correct diagnosis,which was eventually obtained by performing surgery for biopsy of the patient’s abdominal lymph nodes.However,by then,she was already in a cachexic state.Finally,she received a cycle of cyclophosphamide therapy and was advised to visit a hospital specializing in rare diseases.CONCLUSION For IDCT patients without skin lesions,early biopsy is the key to obtaining a correct diagnosis.Moreover,the collective management of IDCT patients is important.Further histological and molecular biology studies based on human specimens are critical for understanding the pathological mechanism of dendritic cell tumors in the future. 展开更多
关键词 Indeterminate dendritic cell tumor Clinical development Surgical biopsy Collective management dendritic cell Case report
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部