期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Biochar-Induced Priming Effects in Young and Old Poplar Plantation Soils 被引量:2
1
作者 Weiwei Lu Yirui Zhang +7 位作者 Yixian Yao Yuying Wu Han Y.H.Chen Hailin Zhang Jia Yu Caiqin Shen Qi Liu Honghua Ruan 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第1期13-26,共14页
The priming effect(PE)induced by biochar provides a basis for evaluating its carbon(C)sequestration potential in soils.A 60 days’laboratory incubation was conducted,which involved the amendment of biochar(1%of soil m... The priming effect(PE)induced by biochar provides a basis for evaluating its carbon(C)sequestration potential in soils.A 60 days’laboratory incubation was conducted,which involved the amendment of biochar(1%of soil mass)produced from rice straw at 300℃(B300)and 500℃(B500)to young(Y)and old(O)poplar plantation soils,with the aim of studying the responses of biochar-induced PEs to poplar plantation ages.This incubation included six treatments:Y+CK(control),Y+B300,Y+B500,O+CK,O+B300,and O+B500.Carbon dioxide(CO_(2))emissions were significantly increased(p<0.05)in the B300 amended soils,while it was decreased in the B500 amended soils compared to the CK.The primed CO_(2) emissions were 2.35 times higher in the Y+B300 than the O+B300 treatments,which was measured to be 18.6 and 5.56 mg C·kg^(-1) with relative PEs of 12.4%and 3.35%,respectively.However,there was little difference between the primed CO_(2) emissions in Y+B500 and O+B500 treatments,which were measured to be-24.9 and-29.6 mg·C·kg^(-1) with relative PEs of-16.6%and-17.8%,respectively.Dissolved organic carbon(DOC)was significantly lower in the young poplar plantation soil than that in the old poplar plantation soil regardless of biochar amendment throughout the incubation,indicating greater C-limit of soil microorganisms in the young poplar plantation soil.Using ^(13)C isotope tracing,neither B300 nor B500 decreased native soil-derived DOC,which indicated that the negative B500-induced PEs were not due to a reduction in the availability of native soil-derived C.In conclusion,the response of biochar-induced PEs to poplar plantation age depends on biochar types while soil available C indirectly affects biochar-induced PEs.Further studies should focus on how the interactive effects between soil C availability and microbial community impacts biochar-induced PEs. 展开更多
关键词 BIOCHAR dissolved organic carbon pyrolysis temperature poplar plantation age priming effect
下载PDF
Nitrogen availability regulates deep soil priming effect by changing microbial metabolic efficiency in a subtropical forest 被引量:1
2
作者 Chang Liao Qiuxiang Tian Feng Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期713-723,共11页
In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by n... In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by nitrogen(N)availability,however,the underlying mechanism is unclear for deep soils,which complicates the prediction of deep soil C cycling in response to N deposition.A series of N applications with ^(13)C labeled glucose was set to investigate the effect of labile C and N on deep SOC mineralization.Microbial biomass,functional community,metabolic efficiency and enzyme activities were examined for their effects on SOC mineralization and PE.During incubation,glucose addition promoted SOC mineralization,resulting in positive PE.The magnitude of PE decreased significantly with increasing N.The N-regulated PE was not dependent on extracellular enzyme activities but was positively correlated with carbon use efficiency and negatively with metabolic quotient.Higher N levels resulted in higher microbial biomass and SOC-derived microbial biomass than lower N levels.These results suggest that the decline in the PE under high N availability was mainly controlled by higher microbial metabolic efficiency which allocated more C for growth.Structural equation modelling also revealed that microbial metabolic efficiency rather than enzyme activities was the main factor regulating the PE.The negative effect of additional N suggests that future N deposition could promote soil C sequestration. 展开更多
关键词 Deep soil priming effect Community-level physiological profiling Soil enzyme activity Microbial metabolic efficiency
下载PDF
Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis 被引量:2
3
作者 Wenjie Zhou Xu Qin +1 位作者 Deguo Lyu Sijun Qin 《Horticultural Plant Journal》 SCIE CSCD 2021年第4期307-317,共11页
Most cherry orchards in China have low organic carbon content,though carbon is very important for plant growth.The changes in soil carbon and bacterial diversity were determined after different amounts of 12C-glucose ... Most cherry orchards in China have low organic carbon content,though carbon is very important for plant growth.The changes in soil carbon and bacterial diversity were determined after different amounts of 12C-glucose were added to the rhizosphere of Cerasus sachalinensis.Soil bacteria diversity was measured using high throughput sequencing,and bacteria containing 13C-glucose were identified using DNA-SIP methods.The results demonstrated that soil microbial biomass carbon(MBC)content and the soil respiratory rate were increased at 3 and 7 days after adding glucose.The soil organic carbon(SOC)content was decreased on the 7th day in the treatment where the added glucose-C was equivalent to the MBC content.SOC content was decreased on the 15th day after adding glucose-C equivalent to five times that of the soil MBC.Compared to the controls,the relative abundance of taxa at the phylum level displayed no significant change in the treatments with glucose-C added as 10%and equal amount of soil MBC 3–30 days after treatment.However,the relative abundance of Proteobacteria increased significantly in the treatment with the addition of glucose-C equivalent to five times of soil MBC.The main changes were observed in the bacteria in several genera including A4,Flavisolibacter,Aquicella,and Candidatus Solibacter.DNA-SIP results indicated that the relative abundance of the Proteobacteria and Pseudomonas was the highest;these were the primary bacteria phylum and genus,respectively,from day 3 to day 15.In conclusion,the changing pattern demonstrated that with the addition of more glucose,the range of the bacterial communities changed more.Proteobacteria and Pseudomonas may be the bacteria promoting priming effect. 展开更多
关键词 Cerasus sachalinensis Soil respiration Soil organic carbon High throughput sequencing DNA-SIP priming effect
下载PDF
Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice
4
作者 Fanyi Kong Shenggao Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期121-132,共12页
The digestibility of cadmium(Cd)in brown rice is directly related to amino acid metabolism in rice and human health.In our field study,three kinds of alkaline calcium-rich soil inorganic amendments(SIAs)at three dosag... The digestibility of cadmium(Cd)in brown rice is directly related to amino acid metabolism in rice and human health.In our field study,three kinds of alkaline calcium-rich soil inorganic amendments(SIAs)at three dosages were applied to produce safe rice and improve the quality of rice in Cd-contaminated paddy.With the increased application of SIA,Cd content in iron plaque on rice root significantly increased,the transfer of Cd from rice root to grain significantly decreased,and then Cd content in brown rice decreased synchronously.The vitro digestibility of Cd in brown rice was estimated by a physiologically based extraction test.Results showed that more than 70%of Cd in brown rice could be digested by simulated gastrointestinal juice.Based on the total and digestible Cd contents in brown rice to evaluate the health risk,the application of 2.25 ton SIA/ha could produce safe rice in acidic slightly Cd-contaminated paddy soils.The amino acids(AAs)in brown rice were determined by high-performance liquid chromatography.The contents of 5 key AAs(KAAs)that actively respond to environmental changes increased significantly with the increased application of SIA.The structural equation model indicated that KAAs could be affected by the Cd translocation capacity from rice root to grain,and consequently altered the ratio of indigestible Cd in brown rice.The formation of indigestible KAAs-Cd complexes by combining KAAs(phenylalanine,leucine,histidine,glutamine,and asparagine)with Cd in brown rice could be considered a potential mechanism for reducing the digestibility of Cd. 展开更多
关键词 Cadmium digestibility Soil inorganic amendments Safe rice Amino acid priming effect Health risk
原文传递
Root exudate chemistry affects soil carbon mobilization via microbial community reassembly 被引量:4
5
作者 Tao Wen Guang-Hui Yu +7 位作者 Wen-Dan Hong Jun Yuan Guo-Qing Niu Peng-Hao Xie Fu-Sheng Sun Lao-Dong Guo Yakov Kuzyakov Qi-Rong Shen 《Fundamental Research》 CAS 2022年第5期697-707,共11页
Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeoc... Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeochemical cycling of nutrients,the effects of particular exudate species on soil carbon fluxes and key rhizosphere microorganisms remain unclear.By combining high-throughput sequencing,q-PCR,and NanoSIMS analyses,we characterized the bacterial community structure,quantified total bacteria depending on root exudate chemistry,and analyzed the consequences on the mobility of mineral-protected carbon.Using well-controlled incubation experiments,we showed that the three most abundant groups of root exudates(amino acids,carboxylic acids,and sugars)have contrasting effects on the release of dissolved organic carbon(DOC)and bioavailable Fe in an Ultisol through the disruption of organo-mineral associations and the alteration of bacterial communities,thus priming organic matter decomposition in the rhizosphere.High resolution(down to 50 nm)NanoSIMS images of mineral particles indicated that iron and silicon colocalized significantly more organic carbon following amino acid inputs than treatments without exudates or with carboxylic acids.The application of sugar strongly reduced microbial diversity without impacting soil carbon mobilization.Carboxylic acids increased the prevalence of Actinobacteria and facilitated carbon mobilization,whereas amino acid addition increased the abundances of Proteobacteria that prevented DOC release.In summary,root exudate functions are defined by their chemical composition that regulates bacterial community composition and,consequently,the biogeochemical cycling of carbon in the rhizosphere. 展开更多
关键词 Microbial community assembly NanoSIMS imaging priming effects Root exudate chemistry Soil organic carbon Rhizosphere processes
原文传递
Do Unfamiliar Text Orientations Affect Transposed-Letter Word Recognition with Readers from Different Language Backgrounds?
6
作者 Lingling Li Guanjie Jia 《Language and Semiotic Studies》 2020年第3期112-131,共20页
Although accurate coding of letter or character identities and positions is very important for word recognition,it is well established that transposed-letter(TL)words or transposedcharacter(TC)words do not influence w... Although accurate coding of letter or character identities and positions is very important for word recognition,it is well established that transposed-letter(TL)words or transposedcharacter(TC)words do not influence word processing.However,most previous studies mainly examined TL words presented horizontally from left to right and considered less whether the same effect would occur with unusual text orientations.This paper examines the issue of whether unfamiliar text orientations would affect TL word processing when words are presented vertically from top to bottom or bottom to top,horizontally from right to left,or extremely rotated by 90°or 180°.Moreover,this paper also looks at the issue of whether readers’previous language backgrounds(monolingual vs.bilingual)and language-specific text orientations(single reading direction vs.multiple text orientations)influence TL word processing in unfamiliar circumstances.Based on the most recent evidence,this paper is in favor of the abstract letter units account which proposes that the basis of orthographic coding in skilled readers is abstract representations.Furthermore,a reconsideration from a perspective of Saussure’s conceptions of the signified and the signifier is developed.In the end,two main directions of future research are suggested:first,to the realm of bilingual TL study,with the aim to specify the key reasons why bilinguals demonstrate mixed results under unfamiliar text orientations and second,to the realm of sentence reading,in order to specify how orthographic information can be processed across longer text units other than words. 展开更多
关键词 text orientation transposed letter priming effects abstract representation
原文传递
Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid grassland ecosystem 被引量:18
7
作者 Hongmei Jin Osbert Jianxin Sun Jianfeng Liu 《Journal of Plant Ecology》 SCIE 2010年第3期209-217,共9页
Aims Elevated atmospheric CO_(2)has the potential to enhance the net primary productivity of terrestrial ecosystems.However,the role of soil microorganisms on soil C cycling following this increased available C remain... Aims Elevated atmospheric CO_(2)has the potential to enhance the net primary productivity of terrestrial ecosystems.However,the role of soil microorganisms on soil C cycling following this increased available C remains ambiguous.This study was conducted to determine how quality and quantity of plant litter inputs would affect soil microorganisms and consequently C turnover.Methods Soil microbial biomass and community structure,bacterial community-level physiological profile,and CO_(2)emission caused by different substrate C decomposition were investigated using techniques of biological measurements,chemical and stable C isotope analysis,and BIOLOG-ECO microplates in a semiarid grassland ecosystem of northern China in 2006 and 2007 by mixing three contrasting types of plant materials,C_(3)shoot litter(SC_(3)),C_(3)root litter(RC_(3)),and C4 shoot litter(SC4),into the 10-to 20-cm soil layer at rates equivalent to 0(C0),60(C60),120(C120)and 240 g C m2(C240).Important Findings Litter addition significantly enriched soil microbial biomass C and N and resulted in changes in microbial structure.Principal component analysis of microbial structure clearly differentiated among zero addition,C_(3)-plant-derived litter,and C4-plant-derived litter and among shoot-and root-derived litter of C_(3)plants;soilmicroorganismsmainly utilized carbohydrates without litter addition,carboxylic acids with C_(3)-plant-derived litter addition and amino acidswith C4-plant-derived litter addition.We also detected stimulated decomposition of older substratewith C4-plant-derived litter inputs.Our results showthat both quality and quantity of belowground litter are involved in affecting soil microbial community structure in semiarid grassland ecosystem. 展开更多
关键词 belowground process decomposition plant litter microbial community priming effect semiarid grassland
原文传递
A Comparison of the Effect of 20-and 40-Min Session Durations of External Counterpulsation on Neuromuscular Function,Cortisol and Comfort in Physically Active Young Men
8
作者 Ruben Collins Massimiliano Ditroilo +2 位作者 Katy Horner Silvia Eusebi Denise McGrath 《Journal of Science in Sport and Exercise》 2021年第2期138-146,共9页
Objectives External Counterpulsation (ECP) is a well-established treatment for coronary disease,with interest growing in the potential to act as a sports recovery modality or pre-performance strategy.This pilot study ... Objectives External Counterpulsation (ECP) is a well-established treatment for coronary disease,with interest growing in the potential to act as a sports recovery modality or pre-performance strategy.This pilot study compared the effects of dif-ferent ECP durations upon neuromuscular function (NF),cortisol and subjective perceptions in a rested state.Methods Eleven physically active male volunteers received two ECP treatments (Renew Sport,Singapore) of differing duration (20-min and 40-min) in a randomised,repeated measures crossover design.Testing occurred pre-ECP,post-ECP,and 24-h post-ECP.NF testing comprised counter-movement jumps (CMJs) and 6-s sprint cycling.Saliva samples were analysed for cortisol.Rate of Perceived Exertion (RPE,6 to 20) and Bipolar Comfort Scales (-10 to 10) quantified partici-pants' experiences,and ECP duration preference was examined.Repeated measures ANOVA and effect size (ES:Cohen's d) analysed NF and cortisol results.Paired t-tests analysed RPE and comfort ratings.Results ECP demonstrated no effect,neither positive nor negative,upon NF outcome measures in both groups.A trend of reduced salivary cortisol levels across both groups following ECP was observed (P =0.066).No RPE difference existed between groups.20-min of ECP was rated as significantly more comfortable than 40-min (P < 0.05) and participants pre-dominantly identified the 20-min ECP session as "more acceptable".Conclusions These results indicate that there were no effects for either duration upon the defined outcome measures,and thus,in these circumstances,no differences between the two durations were observed with respect to effects upon NF and salivary cortisol.The use of ECP warrants further investigation for potential benefits to performance before it can be proposed as an effective preparatory modality. 展开更多
关键词 Pre-competition preparation priming effect Salivary biomarkers Peak power Maximum force
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部