In this paper,we exhibit a free monoid containing all prefix codes in connection with the sets of i-th powers of primitive words for all i≥2.This extends two results given by Shyr and Tsai in 1998 at the same time.
In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we cha...In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we characterize all the cases for which (β1β1) = (β2β) where β1 and β2 are the greatest words in 〈〈β31〉〉 and 〈〈β32〉〉 of M(n).展开更多
基金Supported by the National Natural Science Foundation of China(11861071).
文摘In this paper,we exhibit a free monoid containing all prefix codes in connection with the sets of i-th powers of primitive words for all i≥2.This extends two results given by Shyr and Tsai in 1998 at the same time.
文摘In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we characterize all the cases for which (β1β1) = (β2β) where β1 and β2 are the greatest words in 〈〈β31〉〉 and 〈〈β32〉〉 of M(n).