The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati...The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.展开更多
Texture and its analysis methods are crucial for image feature extraction and classification. Digital elevation model (DEM) is the most important data source of digital terrain analysis and landform classification, an...Texture and its analysis methods are crucial for image feature extraction and classification. Digital elevation model (DEM) is the most important data source of digital terrain analysis and landform classification, and considerable research values are gained from texture feature extraction and analysis from DEM data. In this research, on the basis of optimal texture feature extraction, the hilly area in Shandong, China, was selected as the study area, and DEM data with a resolution of 500 m were used as the experimental data for landform classification. First, second-order texture measures and texture image were extracted from DEM data by using a gray level cooccurrence matrix (GLCM). Second, the variation characteristics of each texture measure were analyzed, and the optimal feature parameters, such as direction, gray level, and texture window, were determined. Meanwhile, the texture feature value, combined with maximum information, was calculated, and the multiband texture image was obtained by resolving three optimal texture measure images. Finally, a support vector machine (SVM) method was adopted to classify landforms on the basis of the multiband texture image. Results indicated that the texture features of DEM data can be sufficiently represented and measured via the quantitative GLCM method. However, the feature parameters during the texture feature value calculation required further optimization. Based on the image texture from DEM data, efficient classification accuracy and ideal classification effect were achieved.展开更多
基金Project(51722401)supported by the National Natural Science Foundation for Excellent Young Scholars of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51734001)supported by the Key Program of National Natural Science Foundation of China
文摘The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.
基金National Natural Science Foundation of China(No.61862038)Gansu Province Science and Technology Program(No.20JR10RA213)+1 种基金Gansu Province Science and Technology Program-Innovation Fund for Small and Medium-sized Enterprises(No.21CX6JA150)Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
基金the auspices of the National Natural Science Foundation of China (Grant Nos. 41601408, 41601411)Shandong University of Science and Technology Research Fund (No. 2019TDJH103).
文摘Texture and its analysis methods are crucial for image feature extraction and classification. Digital elevation model (DEM) is the most important data source of digital terrain analysis and landform classification, and considerable research values are gained from texture feature extraction and analysis from DEM data. In this research, on the basis of optimal texture feature extraction, the hilly area in Shandong, China, was selected as the study area, and DEM data with a resolution of 500 m were used as the experimental data for landform classification. First, second-order texture measures and texture image were extracted from DEM data by using a gray level cooccurrence matrix (GLCM). Second, the variation characteristics of each texture measure were analyzed, and the optimal feature parameters, such as direction, gray level, and texture window, were determined. Meanwhile, the texture feature value, combined with maximum information, was calculated, and the multiband texture image was obtained by resolving three optimal texture measure images. Finally, a support vector machine (SVM) method was adopted to classify landforms on the basis of the multiband texture image. Results indicated that the texture features of DEM data can be sufficiently represented and measured via the quantitative GLCM method. However, the feature parameters during the texture feature value calculation required further optimization. Based on the image texture from DEM data, efficient classification accuracy and ideal classification effect were achieved.