Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe...Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractic...Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractical for users to specify quantitative and exact preferences. Moreover, due to that Quality of Service (QoS) attributes are often interrelated, existing Web service selection approaches which employ weighted summation of QoS attribute values to compute the overall QoS of Web services may produce inaccurate results, since they do not take correlations among QoS attributes into account. To resolve these problems, a Web service selection framework considering user's preference priority is proposed, which incorporates a searching mechanism with QoS range setting to identify services satisfying the user's QoS constraints. With the identified service candidates, based on the idea of Principal Component Analysis (PCA), an algorithm of Web service selection named PCA-WSS (Web Service Selection based on PCA) is proposed, which can eliminate the correlations among QoS attributes and compute the overall QoS of Web services accurately. After computing the overall QoS for each service, the algorithm ranks the Web service candidates based on their overall QoS and recommends services with top QoS values to users. Finally, the effectiveness and feasibility of our approach are validated by experiments, i.e. the selected Web service by our approach is given high average evaluation than other ones by users and the time cost of PCA-WSS algorithm is not affected acutely by the number of service candidates.展开更多
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut...The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.展开更多
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th...With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzh...This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.展开更多
The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger cont...The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios axe chosen as the tabu- lated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabu- lated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermo-chemistry table including strain rate effects when different fuels are used.展开更多
A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are p...A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are presented, showing that the PCA based watermarks can resist malicious attacks including lowpass filtering, re scaling, and compression coding.展开更多
基金This work was supported by the Pilot Seed Grant(Grant No.RES0049944)the Collaborative Research Project(Grant No.RES0043251)from the University of Alberta.
文摘Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金Supported by the National Natural Science Foundation of China(No.90818004and61100054)Program for New Century Excellent Talents in University(No.NCET-10-0140)+1 种基金Excellent Youth Foundation of Hunan Scientific Committee(No.11JJ1011)Scientific Research Fundof Hunan Educational Committee(No.09K085and11B048)
文摘Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractical for users to specify quantitative and exact preferences. Moreover, due to that Quality of Service (QoS) attributes are often interrelated, existing Web service selection approaches which employ weighted summation of QoS attribute values to compute the overall QoS of Web services may produce inaccurate results, since they do not take correlations among QoS attributes into account. To resolve these problems, a Web service selection framework considering user's preference priority is proposed, which incorporates a searching mechanism with QoS range setting to identify services satisfying the user's QoS constraints. With the identified service candidates, based on the idea of Principal Component Analysis (PCA), an algorithm of Web service selection named PCA-WSS (Web Service Selection based on PCA) is proposed, which can eliminate the correlations among QoS attributes and compute the overall QoS of Web services accurately. After computing the overall QoS for each service, the algorithm ranks the Web service candidates based on their overall QoS and recommends services with top QoS values to users. Finally, the effectiveness and feasibility of our approach are validated by experiments, i.e. the selected Web service by our approach is given high average evaluation than other ones by users and the time cost of PCA-WSS algorithm is not affected acutely by the number of service candidates.
基金National Natural Science Foundation of China(No.51805079)Shanghai Natural Science Foundation,China(No.17ZR1400600)Fundamental Research Funds for the Central Universities,China(No.16D110309)
文摘The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.
文摘With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
文摘This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and51576182)the Natural Key Program of Chizhou University(No.2016ZRZ007)
文摘The principal component analysis (PCA) is used to analyze the high dimen- sional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios axe chosen as the tabu- lated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabu- lated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermo-chemistry table including strain rate effects when different fuels are used.
文摘A new watermarking scheme using principal component analysis (PCA) is described.The proposed method inserts highly robust watermarks into still images without degrading their visual quality. Experimental results are presented, showing that the PCA based watermarks can resist malicious attacks including lowpass filtering, re scaling, and compression coding.