For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and ...Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and classification were done to the mine area farmland heavy metal pollution situation by synthetic principal components analysis (PCA).The results show that variable clustering analysis is efficient to identify the principal components of mine area farmland heavy metal pollution.Sort and clustering were done to the synthetic principal components scores of soil sample,which is given by synthetic principal components analysis.Data structure of soil heavy metal contaminations relationships and pollution level of different soil samples are discovered.The results of mine area farmland heavy metal pollution quality assessed and classified with synthetic component scores reflect the influence of both the major and compound heavy metal pol- lutants.Identification and assessment results of mine area farmland heavy metal pollution can provide reference and guide to propose control measures of mine area farmland heavy metal pollution and focus on the key treatment region.展开更多
Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir mode...Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.展开更多
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a ...The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.展开更多
Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of tre...Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs.展开更多
Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct ...Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct judgment of its category. In this paper, mathematical models and methods such as Chi-square test, weighted average method, principal component analysis, cluster analysis, binary classification model and grey correlation analysis were used comprehensively to analyze the data of sample glass products combined with their categories. The results showed that the weathered high-potassium glass could be divided into 12, 9, 10 and 27, 7, 22 and so on.展开更多
Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.I...A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.展开更多
Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA ...Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.展开更多
Principal component analysis(PCA)is employed to extract the principal components(PCs)present in nuclear mass models for the first time.The effects from different nuclear mass models are reintegrated and reorganized in...Principal component analysis(PCA)is employed to extract the principal components(PCs)present in nuclear mass models for the first time.The effects from different nuclear mass models are reintegrated and reorganized in the extracted PCs.These PCs are recombined to build new mass models,which achieve better accuracy than the original theoretical mass models.This comparison indicates that using the PCA approach,the effects contained in different mass models can be collaborated to improve nuclear mass predictions.展开更多
Failure of mine pillars,especially in deep underground mines,significantly threatens the safety of miners and equipment.Previous studies on mine pillar stability design have used classical constitutive models that ign...Failure of mine pillars,especially in deep underground mines,significantly threatens the safety of miners and equipment.Previous studies on mine pillar stability design have used classical constitutive models that ignore the intermediate principal stress component when determining the factor of safety.In this study,we develop and implement a three-dimensional modified Hoek-Brown(HB)constitutive model that incorporates the intermediate principal stress component into the numerical simulation tool FLAC3D.Furthermore,we propose and apply a strength-reduction technique to determine a more accurate factor of safety for mine pillars.This novel approach provides a more comprehensive and realistic method for geomechanical analysis and pillar design,enhancing our understanding of pillar stability.Through numerical analysis,we illustrate the impact of the intermediate principal stress component on mine pillar plasticity.The factor of safety is calculated via the strength reduction method,revealing a substantial improvement from 1.7 with the classical HB model to 2.0 with the 3D HB model.Including the intermediate principal stress component reduces the evolution of plasticity in the mine pillar.For instance,the volume of plastic zones diminishes,and the factor of safety increases as the width-to-height ratio increases.Exemplary simulations show that ignoring the effect of the intermediate principal stress component,including underestimating safety levels,designing suboptimal pillar design,and misinterpreting in situ observations and measurements,can lead to severe consequences.展开更多
This paper provides a generalizable mode for the ecological vulnerability evaluation for tourism planning and development in high mountain areas.The Bayi District located in southeastern Tibet is taken as a typical to...This paper provides a generalizable mode for the ecological vulnerability evaluation for tourism planning and development in high mountain areas.The Bayi District located in southeastern Tibet is taken as a typical town to study the conflict between the protection of natural ecological environment and the exploitation of tourism resources. Based on the Sensitivity-Recovery-Pressure(SRP) framework, a set of vulnerability evaluation systems for plateau tourism regions were developed. The spatial principal component analysis(SPCA), remote sensing and GIS technologies were integrated to apply for spatial quantification of evaluation index system. The ecological vulnerability of the Bayi District was divided into five levels: potential, mild, moderate,severe, and extreme, and our results showed that significantly severe and extreme vulnerability areas were mainly distributed throughout the southwestern and central northern alpine pasture and glacial zones.Potential and mild vulnerability areas were mainly distributed in the vicinity of the Yarlung Zangbo River tributary basin. Then three tourism development and environmental protection zones were classified and appropriate measures for the protection were proposed. It also provides a reference for the spatial distribution of a range of areas that require different protection measures according to ecological vulnerability classification.展开更多
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction ste...An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.展开更多
Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input ...Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.展开更多
Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies ...Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.展开更多
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
文摘Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and classification were done to the mine area farmland heavy metal pollution situation by synthetic principal components analysis (PCA).The results show that variable clustering analysis is efficient to identify the principal components of mine area farmland heavy metal pollution.Sort and clustering were done to the synthetic principal components scores of soil sample,which is given by synthetic principal components analysis.Data structure of soil heavy metal contaminations relationships and pollution level of different soil samples are discovered.The results of mine area farmland heavy metal pollution quality assessed and classified with synthetic component scores reflect the influence of both the major and compound heavy metal pol- lutants.Identification and assessment results of mine area farmland heavy metal pollution can provide reference and guide to propose control measures of mine area farmland heavy metal pollution and focus on the key treatment region.
基金supported by The Ministry of Trade,Industry,and Energy(20172510102090,20142520100440,20162010201980)Global PhD Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015H1A2A1030756)supported by the National Research Foundation of Korea(NRF)Grant(No.2018R1C1B5045260).
文摘Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
文摘The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.
文摘Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs.
文摘Glass is the precious material evidence of the trade of the early Silk Road. The ancient glass was easily affected by the environmental impact and weathering, and the change of composition ratios affected the correct judgment of its category. In this paper, mathematical models and methods such as Chi-square test, weighted average method, principal component analysis, cluster analysis, binary classification model and grey correlation analysis were used comprehensively to analyze the data of sample glass products combined with their categories. The results showed that the weathered high-potassium glass could be divided into 12, 9, 10 and 27, 7, 22 and so on.
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
基金21st Century Education Revitalization Project (No.301703201).
文摘A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.
基金Supported by the Beijing Municipal Social Science Foundation(SZ202210005004)Beijing Natural Science Foundation(9242004)。
文摘Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.
基金supported by the State Key Laboratory of Nuclear Physics and Technology,Peking University(Grant No.NPT2023KFY02)the China Postdoctoral Science Foundation(Grant No.2021M700256)+2 种基金the National Key R&D Program of China(Grant No.2018YFA0404400)the National Natural Science Foundation of China(Grant Nos.11935003,11975031,12141501,and 12070131001)the High-performance Computing Platform of Peking University。
文摘Principal component analysis(PCA)is employed to extract the principal components(PCs)present in nuclear mass models for the first time.The effects from different nuclear mass models are reintegrated and reorganized in the extracted PCs.These PCs are recombined to build new mass models,which achieve better accuracy than the original theoretical mass models.This comparison indicates that using the PCA approach,the effects contained in different mass models can be collaborated to improve nuclear mass predictions.
文摘Failure of mine pillars,especially in deep underground mines,significantly threatens the safety of miners and equipment.Previous studies on mine pillar stability design have used classical constitutive models that ignore the intermediate principal stress component when determining the factor of safety.In this study,we develop and implement a three-dimensional modified Hoek-Brown(HB)constitutive model that incorporates the intermediate principal stress component into the numerical simulation tool FLAC3D.Furthermore,we propose and apply a strength-reduction technique to determine a more accurate factor of safety for mine pillars.This novel approach provides a more comprehensive and realistic method for geomechanical analysis and pillar design,enhancing our understanding of pillar stability.Through numerical analysis,we illustrate the impact of the intermediate principal stress component on mine pillar plasticity.The factor of safety is calculated via the strength reduction method,revealing a substantial improvement from 1.7 with the classical HB model to 2.0 with the 3D HB model.Including the intermediate principal stress component reduces the evolution of plasticity in the mine pillar.For instance,the volume of plastic zones diminishes,and the factor of safety increases as the width-to-height ratio increases.Exemplary simulations show that ignoring the effect of the intermediate principal stress component,including underestimating safety levels,designing suboptimal pillar design,and misinterpreting in situ observations and measurements,can lead to severe consequences.
基金financially supported by the National Key Technologies R&D Program of China(Grant NO.2014BAL07B02)the International Science and Technology Cooperation Project(Grant NO.2011DFA22070)the Tourism Youth Expert Training Projects in Sichuan province,China(Grant NO.SCTYETP2017L18)
文摘This paper provides a generalizable mode for the ecological vulnerability evaluation for tourism planning and development in high mountain areas.The Bayi District located in southeastern Tibet is taken as a typical town to study the conflict between the protection of natural ecological environment and the exploitation of tourism resources. Based on the Sensitivity-Recovery-Pressure(SRP) framework, a set of vulnerability evaluation systems for plateau tourism regions were developed. The spatial principal component analysis(SPCA), remote sensing and GIS technologies were integrated to apply for spatial quantification of evaluation index system. The ecological vulnerability of the Bayi District was divided into five levels: potential, mild, moderate,severe, and extreme, and our results showed that significantly severe and extreme vulnerability areas were mainly distributed throughout the southwestern and central northern alpine pasture and glacial zones.Potential and mild vulnerability areas were mainly distributed in the vicinity of the Yarlung Zangbo River tributary basin. Then three tourism development and environmental protection zones were classified and appropriate measures for the protection were proposed. It also provides a reference for the spatial distribution of a range of areas that require different protection measures according to ecological vulnerability classification.
基金Supported by National High-Tech Program of China (No. 2001AA413110).
文摘An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.
基金Supported by Beijing Municipal Education Commission (No.xk100100435) and the Key Research Project of Science andTechnology from Sinopec (No.E03007).
文摘Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.
基金Project(1212010071012) supported by Guangdong Pangxidong Mineral Prospect Investigation, ChinaProject(41004051) supported by the National Natural Science Foundation of ChinaProject ([2007]038-01-18) supported by Nationwide Mineral Resource Potential Evaluation Projects of Ministry of Land and Resources, China
文摘Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.