The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke...Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.展开更多
In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often i...In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often involved.Meanwhile,owing to their excellent global search ability,evolutionary computation techniques have been widely employed to the FS.So,as a powerful global search method and calculation fast than other EC algorithms,PSO can solve features selection problems well.However,when facing a large number of feature selection,the efficiency of PSO drops significantly.Therefore,plenty of works have been done to improve this situation.Besides,many studies have shown that an appropriate population initialization can effectively help to improve this problem.So,basing on PSO,this paper introduces a new feature selection method with filter-based population.The proposed algorithm uses Principal Component Analysis(PCA)to measure the importance of features first,then based on the sorted feature information,a population initialization method using the threshold selection and the mixed initialization is proposed.The experiments were performed on several datasets and compared to several other related algorithms.Experimental results show that the accuracy of PSO to solve feature selection problems is significantly improved after using proposed method.展开更多
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,...Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.展开更多
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化...为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。展开更多
The cost of highway is affected by many factors.Its composition and calculation are complicated and have great ambiguity.Calculating the cost of highway according to the traditional highway engineering estimation meth...The cost of highway is affected by many factors.Its composition and calculation are complicated and have great ambiguity.Calculating the cost of highway according to the traditional highway engineering estimation method is a completely tedious task.Constructing a highway cost prediction model can forecast the value promptly and improve the accuracy of highway engineering cost.This work sorts out and collects 60 sets of measured data of highway engineering;establishes an expressway cost index system based on 10 factors,including main route mileage,roadbed width,roadbed earthwork,and number of bridges;and processes the data through principal component analysis(PCA)and hierarchical cluster analysis.Particle swarm optimization(PSO)is used to obtain the optimal parameter combination of the regularization parameter c and the kernel function width coefficientin least squares support vector machine(LSSVM).Results show that the average relative and mean square errors of the PCA-PSO-LSSVM model are 0.79%and 10.01%,respectively.Compared with BP neural networks and unoptimized LSSVM model,the PCA-PSO-LSSVM model has smaller relative errors,better generalization ability,and higher prediction accuracy,thereby providing a new method for highway cost prediction in complex environments.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金supported by National Natural Science Foundation under Grant No.50875247Shanxi Province Natural Science Foundation under Grant No.2009011026-1
文摘Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines.
基金This work is supported by National Natural Science Foundation of China(Grant Nos.61876089,61403206)by Science and Technology Program of Ministry of Housing and Urban-Rural Development(2019-K-141)+1 种基金by Entrepreneurial Team of Sponge City(2017R02002)by Innovation and entrepreneurship training program for College Students。
文摘In many fields such as signal processing,machine learning,pattern recognition and data mining,it is common practice to process datasets containing huge numbers of features.In such cases,Feature Selection(FS)is often involved.Meanwhile,owing to their excellent global search ability,evolutionary computation techniques have been widely employed to the FS.So,as a powerful global search method and calculation fast than other EC algorithms,PSO can solve features selection problems well.However,when facing a large number of feature selection,the efficiency of PSO drops significantly.Therefore,plenty of works have been done to improve this situation.Besides,many studies have shown that an appropriate population initialization can effectively help to improve this problem.So,basing on PSO,this paper introduces a new feature selection method with filter-based population.The proposed algorithm uses Principal Component Analysis(PCA)to measure the importance of features first,then based on the sorted feature information,a population initialization method using the threshold selection and the mixed initialization is proposed.The experiments were performed on several datasets and compared to several other related algorithms.Experimental results show that the accuracy of PSO to solve feature selection problems is significantly improved after using proposed method.
基金supported by the National Natural Science Foundation of China (No.11402288)
文摘Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem.
文摘为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。
文摘The cost of highway is affected by many factors.Its composition and calculation are complicated and have great ambiguity.Calculating the cost of highway according to the traditional highway engineering estimation method is a completely tedious task.Constructing a highway cost prediction model can forecast the value promptly and improve the accuracy of highway engineering cost.This work sorts out and collects 60 sets of measured data of highway engineering;establishes an expressway cost index system based on 10 factors,including main route mileage,roadbed width,roadbed earthwork,and number of bridges;and processes the data through principal component analysis(PCA)and hierarchical cluster analysis.Particle swarm optimization(PSO)is used to obtain the optimal parameter combination of the regularization parameter c and the kernel function width coefficientin least squares support vector machine(LSSVM).Results show that the average relative and mean square errors of the PCA-PSO-LSSVM model are 0.79%and 10.01%,respectively.Compared with BP neural networks and unoptimized LSSVM model,the PCA-PSO-LSSVM model has smaller relative errors,better generalization ability,and higher prediction accuracy,thereby providing a new method for highway cost prediction in complex environments.