According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method i...According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method is used to standardize the selected indices,and Principal Component Analysis is applied by using year as a unit.FB is obtained,which is related with the ecological safety of land-use change from 1999 to 2008.According to the scientific,integrative,hierarchical,practical and dynamic principles,ecological safety evaluation index system of land-use change in Ji'an City is established.Principal Component Analysis and evaluation model are used to calculate four parameters,including the natural resources safety index of land use,the socio-economic safety indicators of land use,the eco-environmental safety index of land use,and the ecological safety degree of land use in Ji'an City.Result indicates that the ecological safety degree of land use in Ji'an City shows a slow upward trend as a whole.At the same time,ecological safety degree of land-use change is relatively low in Ji'an City with the safety value of 0.645,which is at a weak safety zone and needs further monitoring and maintenance.展开更多
Continued innovation in screening methodologies remains important for the discovery of high-quality multiactive fungi,which have been of great significance to the development of new drugs.Mangrove-derived fungi,which ...Continued innovation in screening methodologies remains important for the discovery of high-quality multiactive fungi,which have been of great significance to the development of new drugs.Mangrove-derived fungi,which are well recognized as prolific sources of natural products,are worth sustained attention and further study.In this study,118 fungi,which mainly included Aspergillus spp.(34.62%)and Penicillium spp.(15.38%),were isolated from the mangrove ecosystem of the Maowei Sea,and 83.1%of the cultured fungi showed at least one bioactivity in four antibacterial and three antioxidant assays.To accurately evaluate the fungal bioactivities,the fungi with multiple bioactivities were successfully evaluated and screened by principal component analysis(PCA),and this analysis provided a dataset for comparing and selecting multibioactive fungi.Among the 118 mangrove-derived fungi tested in this study,Aspergillus spp.showed the best comprehensive activity.Fungi such as A.clavatonanicus,A.flavipes and A.citrinoterreus,which exhibited high comprehensive bioactivity as determined by the PCA,have great potential in the exploitation of natural products and the development of new drugs.This study demonstrated the first use of PCA as a time-saving,scientific method with a strong ability to evaluate and screen multiactive fungi,which indicated that this method can affect the discovery and development of new drugs.展开更多
The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal compone...The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
[Objectives]Hubei Province has a superior geographical location,and is located in the middle and lower reaches of the Yangtze River,with pleasant climate and abundant natural resources.It is an important province of p...[Objectives]Hubei Province has a superior geographical location,and is located in the middle and lower reaches of the Yangtze River,with pleasant climate and abundant natural resources.It is an important province of population,agriculture and resources in China.[Methods]Based on the data of Statistical Yearbook of Hubei 2018,the agricultural economic indicators of the cities and prefectures in Hubei Province were analyzed with principal component analysis method by using SPSS19.0.[Results]The comprehensive scores and rankings of the agricultural economic development level of the 17 cities and prefectures in Hubei Province were obtained.They were divided into four agricultural development levels.[Conclusions]According to the analysis results,corresponding policy recommendations were put forward to promote the development of agricultural economy in Hubei Province.展开更多
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build...The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.展开更多
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon...The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.展开更多
Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractic...Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractical for users to specify quantitative and exact preferences. Moreover, due to that Quality of Service (QoS) attributes are often interrelated, existing Web service selection approaches which employ weighted summation of QoS attribute values to compute the overall QoS of Web services may produce inaccurate results, since they do not take correlations among QoS attributes into account. To resolve these problems, a Web service selection framework considering user's preference priority is proposed, which incorporates a searching mechanism with QoS range setting to identify services satisfying the user's QoS constraints. With the identified service candidates, based on the idea of Principal Component Analysis (PCA), an algorithm of Web service selection named PCA-WSS (Web Service Selection based on PCA) is proposed, which can eliminate the correlations among QoS attributes and compute the overall QoS of Web services accurately. After computing the overall QoS for each service, the algorithm ranks the Web service candidates based on their overall QoS and recommends services with top QoS values to users. Finally, the effectiveness and feasibility of our approach are validated by experiments, i.e. the selected Web service by our approach is given high average evaluation than other ones by users and the time cost of PCA-WSS algorithm is not affected acutely by the number of service candidates.展开更多
Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy p...Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy process. Principal component analysis (PCA) was used to estimate the regional size and differences of environmental carrying capacities. Main information of four principal components, i.e., carrying capacity of resources supply, carrying capacity of environmental quality, carrying capacity of social economy and carrying capacity of infrastructure construction, was extracted. The ECC evaluation value was divided into five levels of lowest carrying capacity, low carrying capacity, medium carrying capacity, high carrying capacity and highest carrying capacity, respectively. The results showed that on the whole ECC was at the medium carrying capacity level. ECC was generally highest in Guanzhong plain, followed by Loess Plateau, and was lowest in Qiba mountain. The carrying capacity of water resources and environmental quality was relatively low, and the infrastructure carrying capacity was highest among the four components. The temporal spatial variation of ECC was closely related to vulnerability of the natural resources and environment in the regions. Verification was proven that PCA was a useful tool when applied to evaluate ECC and reflect the spatial distribution of large-quantity ECC indices on a large regional scale. This study provides a basis for comprehensive understanding of resources, environment and management for regional balanced development.展开更多
Survey and analysis were conducted on water quality of offshore seas in eastern region of Shenzhen by principal component analysis with SPSS. Then, 8 pollutants indices were then reduced to 5. Based on weighted analys...Survey and analysis were conducted on water quality of offshore seas in eastern region of Shenzhen by principal component analysis with SPSS. Then, 8 pollutants indices were then reduced to 5. Based on weighted analysis of principal component weights, comprehensive scores of different monitored stations were com- puted and sequenced in order to make evaluation on sea quality of eastern region of Shenzhen.展开更多
基金Supported by Major Project of Chinese National Programs for Fundamental Research and Development Program(2009CB219401)Key Project of Natural Science Foundation of China(40534019)
文摘According to the ecological safety evaluation index data of land-use change in Ji'an City from 1999 to 2008,positive treatment on selected reverse indices is conducted by Reciprocal Method.Meanwhile,Index Method is used to standardize the selected indices,and Principal Component Analysis is applied by using year as a unit.FB is obtained,which is related with the ecological safety of land-use change from 1999 to 2008.According to the scientific,integrative,hierarchical,practical and dynamic principles,ecological safety evaluation index system of land-use change in Ji'an City is established.Principal Component Analysis and evaluation model are used to calculate four parameters,including the natural resources safety index of land use,the socio-economic safety indicators of land use,the eco-environmental safety index of land use,and the ecological safety degree of land use in Ji'an City.Result indicates that the ecological safety degree of land use in Ji'an City shows a slow upward trend as a whole.At the same time,ecological safety degree of land-use change is relatively low in Ji'an City with the safety value of 0.645,which is at a weak safety zone and needs further monitoring and maintenance.
基金the Key R&D Program of Shandong Province(No.2020CXGC010703)the Key Project of the Natural Science Foundation of Shandong Province(No.ZR2020 KB021)。
文摘Continued innovation in screening methodologies remains important for the discovery of high-quality multiactive fungi,which have been of great significance to the development of new drugs.Mangrove-derived fungi,which are well recognized as prolific sources of natural products,are worth sustained attention and further study.In this study,118 fungi,which mainly included Aspergillus spp.(34.62%)and Penicillium spp.(15.38%),were isolated from the mangrove ecosystem of the Maowei Sea,and 83.1%of the cultured fungi showed at least one bioactivity in four antibacterial and three antioxidant assays.To accurately evaluate the fungal bioactivities,the fungi with multiple bioactivities were successfully evaluated and screened by principal component analysis(PCA),and this analysis provided a dataset for comparing and selecting multibioactive fungi.Among the 118 mangrove-derived fungi tested in this study,Aspergillus spp.showed the best comprehensive activity.Fungi such as A.clavatonanicus,A.flavipes and A.citrinoterreus,which exhibited high comprehensive bioactivity as determined by the PCA,have great potential in the exploitation of natural products and the development of new drugs.This study demonstrated the first use of PCA as a time-saving,scientific method with a strong ability to evaluate and screen multiactive fungi,which indicated that this method can affect the discovery and development of new drugs.
基金Funded by the National Natural Science Foundation of China(Nos.51408287 and 51668038)the Rolls Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R29)+2 种基金the Distinguished Young Scholars Fund of Gansu Province(1606RJDA318)the Natural Science Foundation of Gansu Province(1506RJZA064)the Excellent Program of Lanzhou Jiaotong University(201606)
文摘The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
文摘[Objectives]Hubei Province has a superior geographical location,and is located in the middle and lower reaches of the Yangtze River,with pleasant climate and abundant natural resources.It is an important province of population,agriculture and resources in China.[Methods]Based on the data of Statistical Yearbook of Hubei 2018,the agricultural economic indicators of the cities and prefectures in Hubei Province were analyzed with principal component analysis method by using SPSS19.0.[Results]The comprehensive scores and rankings of the agricultural economic development level of the 17 cities and prefectures in Hubei Province were obtained.They were divided into four agricultural development levels.[Conclusions]According to the analysis results,corresponding policy recommendations were put forward to promote the development of agricultural economy in Hubei Province.
基金Supported by Scientific Research Project for Commonwealth (GYHY200806017)Innovation Project for Graduate of Jiangsu Province (CX09S-018Z)
文摘The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.
基金supported by the National Natural Science Foundation of China(No.51974023)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41621005)。
文摘The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.
基金Supported by the National Natural Science Foundation of China(No.90818004and61100054)Program for New Century Excellent Talents in University(No.NCET-10-0140)+1 种基金Excellent Youth Foundation of Hunan Scientific Committee(No.11JJ1011)Scientific Research Fundof Hunan Educational Committee(No.09K085and11B048)
文摘Existing Web service selection approaches usually assume that preferences of users have been provided in a quantitative form by users. However, due to the subjectivity and vagueness of preferences, it may be impractical for users to specify quantitative and exact preferences. Moreover, due to that Quality of Service (QoS) attributes are often interrelated, existing Web service selection approaches which employ weighted summation of QoS attribute values to compute the overall QoS of Web services may produce inaccurate results, since they do not take correlations among QoS attributes into account. To resolve these problems, a Web service selection framework considering user's preference priority is proposed, which incorporates a searching mechanism with QoS range setting to identify services satisfying the user's QoS constraints. With the identified service candidates, based on the idea of Principal Component Analysis (PCA), an algorithm of Web service selection named PCA-WSS (Web Service Selection based on PCA) is proposed, which can eliminate the correlations among QoS attributes and compute the overall QoS of Web services accurately. After computing the overall QoS for each service, the algorithm ranks the Web service candidates based on their overall QoS and recommends services with top QoS values to users. Finally, the effectiveness and feasibility of our approach are validated by experiments, i.e. the selected Web service by our approach is given high average evaluation than other ones by users and the time cost of PCA-WSS algorithm is not affected acutely by the number of service candidates.
文摘Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy process. Principal component analysis (PCA) was used to estimate the regional size and differences of environmental carrying capacities. Main information of four principal components, i.e., carrying capacity of resources supply, carrying capacity of environmental quality, carrying capacity of social economy and carrying capacity of infrastructure construction, was extracted. The ECC evaluation value was divided into five levels of lowest carrying capacity, low carrying capacity, medium carrying capacity, high carrying capacity and highest carrying capacity, respectively. The results showed that on the whole ECC was at the medium carrying capacity level. ECC was generally highest in Guanzhong plain, followed by Loess Plateau, and was lowest in Qiba mountain. The carrying capacity of water resources and environmental quality was relatively low, and the infrastructure carrying capacity was highest among the four components. The temporal spatial variation of ECC was closely related to vulnerability of the natural resources and environment in the regions. Verification was proven that PCA was a useful tool when applied to evaluate ECC and reflect the spatial distribution of large-quantity ECC indices on a large regional scale. This study provides a basis for comprehensive understanding of resources, environment and management for regional balanced development.
文摘Survey and analysis were conducted on water quality of offshore seas in eastern region of Shenzhen by principal component analysis with SPSS. Then, 8 pollutants indices were then reduced to 5. Based on weighted analysis of principal component weights, comprehensive scores of different monitored stations were com- puted and sequenced in order to make evaluation on sea quality of eastern region of Shenzhen.