针对模式识别新方法 VPMCD(variable predictive model based class discriminate)在参数估计过程中存在的缺陷,对VPMCD方法进行了改进,用主成分估计法代替原方法中的最小二乘法进行参数估计,消除了预测变量间存在多重线性相关性的影响...针对模式识别新方法 VPMCD(variable predictive model based class discriminate)在参数估计过程中存在的缺陷,对VPMCD方法进行了改进,用主成分估计法代替原方法中的最小二乘法进行参数估计,消除了预测变量间存在多重线性相关性的影响,可以获得更加稳定的模型参数,从而提高模式识别的精度。采用局部特征尺度分解(LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取各分量的近似熵组成故障特征向量作为改进VPMCD的输入,以改进VPMCD作为分类器对滚动轴承的工作状态和故障类型进行分类。对正常状态、外圈故障、内圈故障和滚动体故障四种不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明该方法有效。展开更多
为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。...为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。对于输入的不同光照、人脸表情和姿势的图像先进行归一化处理,然后将归一化后的图像转化成一维向量,再用FLDA方法提取每幅图像的特征,形成新的复向量空间;通过运用复主分量分析,来抽取人脸图像的有效鉴别特征;最后通过HMM对这些特征进行训练,得到一个优化的HMM并应用于识别。在ORL人脸数据库中进行实验,实验结果表明,该方法具有较高的识别率。展开更多
文摘针对模式识别新方法 VPMCD(variable predictive model based class discriminate)在参数估计过程中存在的缺陷,对VPMCD方法进行了改进,用主成分估计法代替原方法中的最小二乘法进行参数估计,消除了预测变量间存在多重线性相关性的影响,可以获得更加稳定的模型参数,从而提高模式识别的精度。采用局部特征尺度分解(LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取各分量的近似熵组成故障特征向量作为改进VPMCD的输入,以改进VPMCD作为分类器对滚动轴承的工作状态和故障类型进行分类。对正常状态、外圈故障、内圈故障和滚动体故障四种不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明该方法有效。
基金教育部新世纪优秀人才支持计划(the Program for New Century Excellent Talents in University No.NCET-06-0298)辽宁省高等学校优秀人才支持计划(the Program for Liaoning Excellent Talents in University No.RC-05-07,No.2006R06)+2 种基金辽宁省教育厅科学研究计划(the Program for Study of Science of the Educational Department of Liaoning Province No.05L020)大连市科学技术计划(the Programfor Dalian Science and Technology No.2005A10GX106)大连大学辽宁省智能信息处理重点实验室开放课题(the Open Fund of LiaoningKey Lab of Intelligent Information Processing,Dalian University No.2005-9)
文摘为了获得具有较高识别率的算法,提出了一种将Fisher线性鉴别分析(Fisher Linear Discriminant Analysis)、复主分量分析(Principal Analysis in the Complex Space)与隐马尔可夫模型(Hidden Markov Models)相结合进行人脸识别的方法。对于输入的不同光照、人脸表情和姿势的图像先进行归一化处理,然后将归一化后的图像转化成一维向量,再用FLDA方法提取每幅图像的特征,形成新的复向量空间;通过运用复主分量分析,来抽取人脸图像的有效鉴别特征;最后通过HMM对这些特征进行训练,得到一个优化的HMM并应用于识别。在ORL人脸数据库中进行实验,实验结果表明,该方法具有较高的识别率。