期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
1
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
下载PDF
Research on will-dimension SIFT algorithms for multi-attitude face recognition 被引量:1
2
作者 SHENG Wenshun SUN Yanwen XU Liujing 《High Technology Letters》 EI CAS 2022年第3期280-287,共8页
The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SI... The results of face recognition are often inaccurate due to factors such as illumination,noise intensity,and affine/projection transformation.In response to these problems,the scale invariant feature transformation(SIFT) is proposed,but its computational complexity and complication seriously affect the efficiency of the algorithm.In order to solve this problem,SIFT algorithm is proposed based on principal component analysis(PCA) dimensionality reduction.The algorithm first uses PCA algorithm,which has the function of screening feature points,to filter the feature points extracted in advance by the SIFT algorithm;then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points,thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction.In this paper,through experiments on the public ORL face database,the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm. 展开更多
关键词 face recognition scale invariant feature transformation(SIFT) dimensionality reduction principal component analysis-scale invariant feature transformation(PCA-SIFT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部