A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/s...A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.展开更多
Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once th...Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once the debris is cleared, it begins to sprout and restore damaged connections. Damaged axons are able to regrow as long as the perikarya are intact and have made contact with the Schwann cells in the endoneurial channel[2]. Under appropriate conditions,展开更多
This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynami...This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and control modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended control devices/systems, and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects - of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading. This first paper deals with quantitative definitions of principal axes and “cross effects” of three-dimensional structures under static load by using linear algebra. It shows theoretically that, for three-dimensional structures, such principal axes rarely exist. Under static loading conditions, the cross effect is typically small and negligible from the viewpoint of engineering applications. However, it provides the theoretical base for subsequent quantification of the response couplings under dynamic loads, which is reported in part II of this series.展开更多
This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynami...This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynamie response of structures to enable better design of structures and response modification devices/systems.Under idealized design condi- tions,the structural responses are obtained by using single directinn input ground motions in the direction of the intended response modification devices/systems,and by assuming that the responses of the structure is deconpleable in three mutual- ly perpendicular directions.This standard practice has been applied to both new and retrofitted structures using various seis- mic protective systems.Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects of which torsion is a component)of the dynamic response of structures.In order to quantify such effects,it is necessary to examine the principal axes of structures under both static and dynamic loading.In this twn-part series,the first paper is concerned with static loading,which provides definitions and fundamental formulations,with the conclusion that cross effects of a statically loaded M-DOF structure resulting from the lack of principal axes are of insignificant magnitude. However,under dynamic or earthquake loading,a relatively small amount of energy transferred across perpendicular direc- tions is accumulated,which may result in significant enlargement of the structural response.This paper deals with a formu- lation to define the principal axes of M-DOF structures under dynamic loading and develops quantitative measures to identify cross effects resuhing from the non-existence of principal axes.展开更多
Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollu...Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.展开更多
Rooting on the context of accelerating and rapid societal change and global competence trend,this study explored the meaning of core competence,roles of schooling for cultivating students to be holistic person and str...Rooting on the context of accelerating and rapid societal change and global competence trend,this study explored the meaning of core competence,roles of schooling for cultivating students to be holistic person and strategies for shaping competence-oriented school campus culture.The related literature this study reviewed include the meaning of core competence,curriculum program and teaching design for oriented competence in schools,strategies to shape school culture for teaching and learning of oriented competence,and integrated comment.In order to achieve the research purposes,this study adopted the interview and document analysis to collect data.According to the literature review,interview,document analysis,result and discussion,this study proposed conclusions in the following directions:1)The meaning of core competence;2)The main point of global competence;3)School is a learning organization and learning base within competence oriented school campus;4)Principals play the roles of vision leadership,instructional leadership and curriculum leadership;5)Teachers play the roles for shaping competence oriented school campus culture;6)The strategies of shaping competence oriented school campus culture;7)The process and related factors of constructing school-based curriculum.Finally,researchers proposed reflection for this study.展开更多
The catastrophic rockslide,which frequently triggers numerous severe disasters worldwide,has drawn much attention globally;however,understanding the initiation mechanism of catastrophic rockslides in the absence of ty...The catastrophic rockslide,which frequently triggers numerous severe disasters worldwide,has drawn much attention globally;however,understanding the initiation mechanism of catastrophic rockslides in the absence of typical single triggering factors related to strong seismic activity or torrential precipitation continues to be challenging within the global scientific community.This study aims to determine the mechanism of the three largest catastrophic rockslides in the eastern Tibetan Plateau,Yigong,Xinmo,and Baige,over the past 20 years using field investigation,remote sensing,and runoff analysis.Instead of the conventional driving factors of heavy rainfall and strong earthquakes,the multi-wing butterfly effects(MWBE)of climatic factors and weak earthquakes are for the first time identified as drivers of the catastrophic rockslide disasters.First,strong tectonic uplift,fast fluvial incision,high-density faults,and large regional water confluence formed the slopes in the critical regime,creating the source conditions of rockslide.Second,the MWBE of early dry-heat events and antecedent rainfall,combined with imminent weak earthquakes,initiated rockslide.Third,the delayed amplified runoff moving toward the sliding surface and lowering the strength of the locking-rock segment constituted the fundamental mechanism of the MWBE on rockslide.The catastrophic rockslide was ultimately inferred to be a nonlinear chaotic process;however,prediction and forecasting of rockslide based on the MWBE in the early stages are possible and essential.This finding presents a new perspective concerning forecasting progressive landslides.展开更多
A model of butterfly catastrophe is confirmed based on the matching and fitting the previous experimental data from alumina electrolysis when anode effect occurs.The complicated behaviour of the cryolite-alumina melt ...A model of butterfly catastrophe is confirmed based on the matching and fitting the previous experimental data from alumina electrolysis when anode effect occurs.The complicated behaviour of the cryolite-alumina melt system with varying parameters could be generally described by this model.Therefore,the anode effect and its occurrence may be thoroughly understood.展开更多
Right after Lehman Brothers declared bankruptcy a series of bad news came one after another.Merrill Lynch was bought out.American International Group(AIG)was handed over to the U.S.government. Washington Mutual,the la...Right after Lehman Brothers declared bankruptcy a series of bad news came one after another.Merrill Lynch was bought out.American International Group(AIG)was handed over to the U.S.government. Washington Mutual,the largest savings bank in the U.S.,was said to be looking for a buyer.In Rus- sia,stock exchange was forced to a suspension due to a record slump in 10 years in its stock market. It seems that the end of the Moon Festival this year marked the beginning of a global financial crisis。展开更多
In the history of human beings, every choice we make is the birth of the next. Even something simple can completely reshape one's life. It's just like the Butterfly Effect—one never knows what is at the end. ...In the history of human beings, every choice we make is the birth of the next. Even something simple can completely reshape one's life. It's just like the Butterfly Effect—one never knows what is at the end. English study, also, may produce profound influences on the creation of art works. This passage aims at proving English study, as a disputable topic in present education in art schools, has its importance for art learners to enhance their creative thinking in the process of art creation.展开更多
The vaccination of one person may prevent another from becoming infected, either because the vaccine may prevent the first person from acquiring the infection and thereby reduce the probability of transmission to the ...The vaccination of one person may prevent another from becoming infected, either because the vaccine may prevent the first person from acquiring the infection and thereby reduce the probability of transmission to the second, or because, if the first person is infected, the vaccine may impair the ability of the infectious agent to initiate new infections. The former mechanism is referred as a contagion effect and the latter is referred as an infectiousness effect. By applying a principal stratification approach, the conditional infectiousness effect has been defined, but the contagion effect is not defined using this approach. Recently, new definitions of unconditional infectiousness and contagion effects were provided by applying a mediation analysis approach. In addition, a simple relationship between conditional and unconditional infectiousness effects was found under a number of assumptions. These two infectiousness effects can be assessed by very simple estimation and sensitivity analysis methods under the assumptions. Nevertheless, such simple methods to assess the contagion effect have not been discussed. In this paper, we review the methods of assessing infectiousness effects, and apply them to the inference of the contagion effect. The methods provided here are illustrated with hypothetical vaccine trial data.展开更多
This paper is a study on the compulsion of transformational leadership from the part of the principal of this era when the demography of the students are changing exponentially, when the globe is experiencing massive ...This paper is a study on the compulsion of transformational leadership from the part of the principal of this era when the demography of the students are changing exponentially, when the globe is experiencing massive changes in methods and techniques in educational process but the institutions remain the same as its ethics and operational strategies. The time is eloping when an educational head earns praises due to their prominence and performance in managerial functioning. But this paper tends to focus on several persisting challenges in these educational institutions like huge gap between teacher-student ratio, students’ increasing technological oriented learning, teachers’ lack of knowledge of multimedia class operation, girls’ little rate of enrolment in higher level of education, early marriage of school going girls and ensuring quality education to girls as per the demand of SDG 4 by 2030. This paper fosters the idea that a transformational head of the institution can be successful in this chase of challenges as he involves everyone to activities in order to reach goal. He works with the other members as a team member and thus a challenge of an institution turns to be liability to all.展开更多
Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenge...Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.展开更多
The purpose of this work is to develop a model of effective educational administration and leadership through the conceptual definition of educational administration and the understanding of the concept of leadership ...The purpose of this work is to develop a model of effective educational administration and leadership through the conceptual definition of educational administration and the understanding of the concept of leadership in school.In particular,the educational administration will be identified and demarcated and its basic functions that are vital for the smooth operation,development and efficiency of educational organizations will be identified.Then,the concept of leadership will be analyzed,the modern models and forms in which it can be practiced in schools will be presented and the basic differences between leadership and administration will be captured.Finally,the concept of school effectiveness will be analyzed and effective ways of administration and leadership at school level will be listed,emphasizing the skills that an effective principal of a modern school unit must have.展开更多
Local adaptation is an important process that drives the evolution of populations within species, and it can be generally expressed by the higher fitness of individuals raised in their native habitats versus in a fore...Local adaptation is an important process that drives the evolution of populations within species, and it can be generally expressed by the higher fitness of individuals raised in their native habitats versus in a foreign location. The influence of local adaptation is especially prominent in species that subsist in small and/or highly isolated populations. This study evaluated whether the federally endangered Karner blue butterfly, Lycaeides melissa samuelis (Lepidoptera: Lycaenidae) is locally adapted to its exclusive larval host plant, the wild lupine (Lupinus perennis). To test for local adaptation, individuals from a laboratory-raised colony were reared on wild lupine plants from populations belonging to either their native (Indiana) or a foreign (Michigan and Wisconsin) region. For this purpose, lupine plants from the different populations were grown in a common garden in growth chambers, and one Karner blue larva was placed on each plant. Fitness traits related to growth and development were recorded for each butterfly across populations. Days from hatching to pupation and eclosion showed gender-specific significant differences across wild lupine populations and plant genotypes (within populations). The percent survival of butterflies (from hatching to eclosion) also differed among plants from different populations. These results indicate that wild lupine sources can affect some developmental traits of Karner blue butterflies. However, growth-related traits, such as pupal and adult weight of individuals reared in plants from native populations did not differ from those of foreign regions. The apparent absence of local adaptation to wild lupine suggests that, at least, some individuals of this species could be translocated from native populations to foreign reintroduction sites without experiencing decreased fitness levels. However, future studies including more populations across the geographical range of this butterfly are recommended to evaluate other environmental factors that could influence adaptation on a wider spatial scale.展开更多
The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the ex...The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the existence of a Dirac monopole (not yet experimentally confirmed) leads to the quantization of the electric charge. Both phenomena can be mathematically described in the context of fiber bundle theory. Using this approach, we briefly review the mutual determination of the corresponding connections ωA−B, ωDand potentials AA−B±, AD±. This mathematical result gives an additional theoretical support to present day active search of the magnetic charge.展开更多
基金Projects(41172276,51279155)supported by the National Natural Science Foundation of ChinaProjects(106-00X101,106-5X1205)supported by the Central Financial Funds for the Development of Characteristic Key Disciplines in Local University,China
文摘A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.
文摘Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once the debris is cleared, it begins to sprout and restore damaged connections. Damaged axons are able to regrow as long as the perikarya are intact and have made contact with the Schwann cells in the endoneurial channel[2]. Under appropriate conditions,
基金funded through a contract from the Federal Highway Administration (Contract No.ETFH61-98-C-00094)a grant from the Earthquake Education Research Centers Program of the National Science Foundation to the Multidisciplinary Center for Earthquake Engineering Research (Grant No.ECC-9701471).
文摘This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and control modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended control devices/systems, and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects - of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading. This first paper deals with quantitative definitions of principal axes and “cross effects” of three-dimensional structures under static load by using linear algebra. It shows theoretically that, for three-dimensional structures, such principal axes rarely exist. Under static loading conditions, the cross effect is typically small and negligible from the viewpoint of engineering applications. However, it provides the theoretical base for subsequent quantification of the response couplings under dynamic loads, which is reported in part II of this series.
基金a contract from the Federal Highway Adiministration(Contract No.ETFH61-98-C-00094)a Grant from the Earthquake Education Research Centers Program of the National Science Foundation to the Multidisciplinary Center for Earthquake Engineering Research(Grant No.EEC-9701471)
文摘This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynamie response of structures to enable better design of structures and response modification devices/systems.Under idealized design condi- tions,the structural responses are obtained by using single directinn input ground motions in the direction of the intended response modification devices/systems,and by assuming that the responses of the structure is deconpleable in three mutual- ly perpendicular directions.This standard practice has been applied to both new and retrofitted structures using various seis- mic protective systems.Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects of which torsion is a component)of the dynamic response of structures.In order to quantify such effects,it is necessary to examine the principal axes of structures under both static and dynamic loading.In this twn-part series,the first paper is concerned with static loading,which provides definitions and fundamental formulations,with the conclusion that cross effects of a statically loaded M-DOF structure resulting from the lack of principal axes are of insignificant magnitude. However,under dynamic or earthquake loading,a relatively small amount of energy transferred across perpendicular direc- tions is accumulated,which may result in significant enlargement of the structural response.This paper deals with a formu- lation to define the principal axes of M-DOF structures under dynamic loading and develops quantitative measures to identify cross effects resuhing from the non-existence of principal axes.
文摘Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.
文摘Rooting on the context of accelerating and rapid societal change and global competence trend,this study explored the meaning of core competence,roles of schooling for cultivating students to be holistic person and strategies for shaping competence-oriented school campus culture.The related literature this study reviewed include the meaning of core competence,curriculum program and teaching design for oriented competence in schools,strategies to shape school culture for teaching and learning of oriented competence,and integrated comment.In order to achieve the research purposes,this study adopted the interview and document analysis to collect data.According to the literature review,interview,document analysis,result and discussion,this study proposed conclusions in the following directions:1)The meaning of core competence;2)The main point of global competence;3)School is a learning organization and learning base within competence oriented school campus;4)Principals play the roles of vision leadership,instructional leadership and curriculum leadership;5)Teachers play the roles for shaping competence oriented school campus culture;6)The strategies of shaping competence oriented school campus culture;7)The process and related factors of constructing school-based curriculum.Finally,researchers proposed reflection for this study.
基金supported by the National Natural Science Foundation of China(Grant No.U20A20110)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0906)+2 种基金the Key R&D Projects of Tibet Autonomous Region Science and Technology Pro ject(Grant No.XZ202101ZD0013G)the International Cooperation Overseas Platform Project,CAS(Grant No.131C11KYSB20200033)the Outstanding Talent Project of Thousand Talents Program in China.
文摘The catastrophic rockslide,which frequently triggers numerous severe disasters worldwide,has drawn much attention globally;however,understanding the initiation mechanism of catastrophic rockslides in the absence of typical single triggering factors related to strong seismic activity or torrential precipitation continues to be challenging within the global scientific community.This study aims to determine the mechanism of the three largest catastrophic rockslides in the eastern Tibetan Plateau,Yigong,Xinmo,and Baige,over the past 20 years using field investigation,remote sensing,and runoff analysis.Instead of the conventional driving factors of heavy rainfall and strong earthquakes,the multi-wing butterfly effects(MWBE)of climatic factors and weak earthquakes are for the first time identified as drivers of the catastrophic rockslide disasters.First,strong tectonic uplift,fast fluvial incision,high-density faults,and large regional water confluence formed the slopes in the critical regime,creating the source conditions of rockslide.Second,the MWBE of early dry-heat events and antecedent rainfall,combined with imminent weak earthquakes,initiated rockslide.Third,the delayed amplified runoff moving toward the sliding surface and lowering the strength of the locking-rock segment constituted the fundamental mechanism of the MWBE on rockslide.The catastrophic rockslide was ultimately inferred to be a nonlinear chaotic process;however,prediction and forecasting of rockslide based on the MWBE in the early stages are possible and essential.This finding presents a new perspective concerning forecasting progressive landslides.
文摘A model of butterfly catastrophe is confirmed based on the matching and fitting the previous experimental data from alumina electrolysis when anode effect occurs.The complicated behaviour of the cryolite-alumina melt system with varying parameters could be generally described by this model.Therefore,the anode effect and its occurrence may be thoroughly understood.
文摘Right after Lehman Brothers declared bankruptcy a series of bad news came one after another.Merrill Lynch was bought out.American International Group(AIG)was handed over to the U.S.government. Washington Mutual,the largest savings bank in the U.S.,was said to be looking for a buyer.In Rus- sia,stock exchange was forced to a suspension due to a record slump in 10 years in its stock market. It seems that the end of the Moon Festival this year marked the beginning of a global financial crisis。
文摘In the history of human beings, every choice we make is the birth of the next. Even something simple can completely reshape one's life. It's just like the Butterfly Effect—one never knows what is at the end. English study, also, may produce profound influences on the creation of art works. This passage aims at proving English study, as a disputable topic in present education in art schools, has its importance for art learners to enhance their creative thinking in the process of art creation.
文摘The vaccination of one person may prevent another from becoming infected, either because the vaccine may prevent the first person from acquiring the infection and thereby reduce the probability of transmission to the second, or because, if the first person is infected, the vaccine may impair the ability of the infectious agent to initiate new infections. The former mechanism is referred as a contagion effect and the latter is referred as an infectiousness effect. By applying a principal stratification approach, the conditional infectiousness effect has been defined, but the contagion effect is not defined using this approach. Recently, new definitions of unconditional infectiousness and contagion effects were provided by applying a mediation analysis approach. In addition, a simple relationship between conditional and unconditional infectiousness effects was found under a number of assumptions. These two infectiousness effects can be assessed by very simple estimation and sensitivity analysis methods under the assumptions. Nevertheless, such simple methods to assess the contagion effect have not been discussed. In this paper, we review the methods of assessing infectiousness effects, and apply them to the inference of the contagion effect. The methods provided here are illustrated with hypothetical vaccine trial data.
文摘This paper is a study on the compulsion of transformational leadership from the part of the principal of this era when the demography of the students are changing exponentially, when the globe is experiencing massive changes in methods and techniques in educational process but the institutions remain the same as its ethics and operational strategies. The time is eloping when an educational head earns praises due to their prominence and performance in managerial functioning. But this paper tends to focus on several persisting challenges in these educational institutions like huge gap between teacher-student ratio, students’ increasing technological oriented learning, teachers’ lack of knowledge of multimedia class operation, girls’ little rate of enrolment in higher level of education, early marriage of school going girls and ensuring quality education to girls as per the demand of SDG 4 by 2030. This paper fosters the idea that a transformational head of the institution can be successful in this chase of challenges as he involves everyone to activities in order to reach goal. He works with the other members as a team member and thus a challenge of an institution turns to be liability to all.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072356 and 52032011)the 2019 Zaozhuang High-level Talents Project (Grant No.ZZYF-01).
文摘Purpose-This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.Design/methodology/approach-In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel,taking the passenger compartment window glass of the CRH3 high speed train onWuhan-Guangzhou High Speed Railway as the research object,this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit,the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km$h-1.Findings-The results show that while crossing the tunnel,the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures,which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain.The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa,and the maximum value occurs at the corresponding time of crossing the tunnel groups.The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects,while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel.The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time.The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure.Thus,the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.Originality/value-The research results provide data support for the analysis of mechanical characteristics,damage mechanism,strength design and structural optimization of high speed train glass.
文摘The purpose of this work is to develop a model of effective educational administration and leadership through the conceptual definition of educational administration and the understanding of the concept of leadership in school.In particular,the educational administration will be identified and demarcated and its basic functions that are vital for the smooth operation,development and efficiency of educational organizations will be identified.Then,the concept of leadership will be analyzed,the modern models and forms in which it can be practiced in schools will be presented and the basic differences between leadership and administration will be captured.Finally,the concept of school effectiveness will be analyzed and effective ways of administration and leadership at school level will be listed,emphasizing the skills that an effective principal of a modern school unit must have.
文摘Local adaptation is an important process that drives the evolution of populations within species, and it can be generally expressed by the higher fitness of individuals raised in their native habitats versus in a foreign location. The influence of local adaptation is especially prominent in species that subsist in small and/or highly isolated populations. This study evaluated whether the federally endangered Karner blue butterfly, Lycaeides melissa samuelis (Lepidoptera: Lycaenidae) is locally adapted to its exclusive larval host plant, the wild lupine (Lupinus perennis). To test for local adaptation, individuals from a laboratory-raised colony were reared on wild lupine plants from populations belonging to either their native (Indiana) or a foreign (Michigan and Wisconsin) region. For this purpose, lupine plants from the different populations were grown in a common garden in growth chambers, and one Karner blue larva was placed on each plant. Fitness traits related to growth and development were recorded for each butterfly across populations. Days from hatching to pupation and eclosion showed gender-specific significant differences across wild lupine populations and plant genotypes (within populations). The percent survival of butterflies (from hatching to eclosion) also differed among plants from different populations. These results indicate that wild lupine sources can affect some developmental traits of Karner blue butterflies. However, growth-related traits, such as pupal and adult weight of individuals reared in plants from native populations did not differ from those of foreign regions. The apparent absence of local adaptation to wild lupine suggests that, at least, some individuals of this species could be translocated from native populations to foreign reintroduction sites without experiencing decreased fitness levels. However, future studies including more populations across the geographical range of this butterfly are recommended to evaluate other environmental factors that could influence adaptation on a wider spatial scale.
文摘The Aharonov-Bohm effect (experimentally verified) constitutes an undubitable proof of the non local nature of quantum mechanics and of the gauge character of the electromagnetic interaction. On the other hand, the existence of a Dirac monopole (not yet experimentally confirmed) leads to the quantization of the electric charge. Both phenomena can be mathematically described in the context of fiber bundle theory. Using this approach, we briefly review the mutual determination of the corresponding connections ωA−B, ωDand potentials AA−B±, AD±. This mathematical result gives an additional theoretical support to present day active search of the magnetic charge.