Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Dissolved oxygen(DO)usually refers to the amount of oxygen dissolved in water.In the environment,medicine,and fermentation industries,the DO level needs to be accurate and capable of online monitoring to guide the pre...Dissolved oxygen(DO)usually refers to the amount of oxygen dissolved in water.In the environment,medicine,and fermentation industries,the DO level needs to be accurate and capable of online monitoring to guide the precise control of water quality,clinical treatment,and microbial metabolism.Compared with other analytical methods,the electrochemical strategy is superior in its fast response,low cost,high sensitivity,and portable device.However,an electrochemical DO sensor faces a trade-off between sensitivity and long-term stability,which strongly limits its practical applications.To solve this problem,various advanced nanomaterials have been proposed to promote detection performance owing to their excellent electrocatalysis,conductivity,and chemical stability.Therefore,in this review,we focus on the recent progress of advanced nanomaterial-based electrochemical DO sensors.Through the comparison of the working principles on the main analysis techniques toward DO,the advantages of the electrochemical method are discussed.Emphasis is placed on recently developed nanomaterials that exhibit special characteristics,including nanostructures and preparation routes,to benefit DO determination.Specifically,we also introduce some interesting research on the configuration design of the electrode and device,which is rarely introduced.Then,the different requirements of the electrochemical DO sensors in different application fields are included to provide brief guidance on the selection of appropriate nanomaterials.Finally,the main challenges are evaluated to propose future development prospects and detection strategies for nanomaterial-based electrochemical sensors.展开更多
Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectr...Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.展开更多
In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory ana...In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.展开更多
By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained th...By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion.展开更多
Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching...Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.展开更多
In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat...In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.展开更多
We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 wit...We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).展开更多
We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and ...We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.展开更多
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coatin...Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.展开更多
Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculati...Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.展开更多
This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo...This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver...Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Key Research and Development Program of China(2021YFC2103300)the National Natural Science Foundation of China(22078148)the Natural Science Foundation of Jiangsu Province(BK20220002).
文摘Dissolved oxygen(DO)usually refers to the amount of oxygen dissolved in water.In the environment,medicine,and fermentation industries,the DO level needs to be accurate and capable of online monitoring to guide the precise control of water quality,clinical treatment,and microbial metabolism.Compared with other analytical methods,the electrochemical strategy is superior in its fast response,low cost,high sensitivity,and portable device.However,an electrochemical DO sensor faces a trade-off between sensitivity and long-term stability,which strongly limits its practical applications.To solve this problem,various advanced nanomaterials have been proposed to promote detection performance owing to their excellent electrocatalysis,conductivity,and chemical stability.Therefore,in this review,we focus on the recent progress of advanced nanomaterial-based electrochemical DO sensors.Through the comparison of the working principles on the main analysis techniques toward DO,the advantages of the electrochemical method are discussed.Emphasis is placed on recently developed nanomaterials that exhibit special characteristics,including nanostructures and preparation routes,to benefit DO determination.Specifically,we also introduce some interesting research on the configuration design of the electrode and device,which is rarely introduced.Then,the different requirements of the electrochemical DO sensors in different application fields are included to provide brief guidance on the selection of appropriate nanomaterials.Finally,the main challenges are evaluated to propose future development prospects and detection strategies for nanomaterial-based electrochemical sensors.
基金supported by the National Natural Science Foundation of China (No.11375136)。
文摘Graphene-doped CuO(rGO-CuO)nanocomposites with flower shapes were prepared by an improved solvothermal method.The samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy and UV–visible spectroscopy.The active species in the degradation reaction of rGO-CuO composites under ultrasonic irradiation were detected by electron paramagnetic resonance.On the basis of comparative experiments,the photodegradation mechanisms of two typical dyes,Rhodamine B(Rh B)and methyl orange(MO),were proposed.The results demonstrated that the doped CuO could improve the degradation efficiency.The catalytic degradation efficiency of rGO-CuO(2:1)to rhodamine B(RhB)and methyl orange(MO)reached 90%and 87%respectively,which were 2.1 times and 4.4 times of the reduced graphene oxide.Through the first-principles and other theories,we give the reasons for the enhanced catalytic performance of rGO-CuO:combined with internal and external factors,rGO-CuO under ultrasound could produce more hole and active sites that could interact with the OH·in pollutant molecules to achieve degradation.The rGO-CuO nanocomposite has a simple preparation process and low price,and has a high efficiency of degrading water pollution products and no secondary pollution products.It has a low-cost and high-efficiency application prospect in water pollution industrial production and life.
基金supported by the National Natural Science Foundation of China(62333010,61673205).
文摘In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974395 and 12188101)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)+1 种基金the National Key R&D Program of China(Grant Nos.2022YFA1403800 and 2022YFA1403400)the Center for Materials Genome。
文摘By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion.
基金This work is supported by the Natural Science Foundation of China(Grant Nos.62274143&62204216)Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LHZSD24E020001)+4 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant Nos.2022C0102&2023C01010)Partial support was provided by the Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)the Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors,Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University.
文摘Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.
基金Funded by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0628)the Taiyuan Institute of Technology Scientific Research Initial Funding (No. 2022KJ072)+2 种基金the Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technologythe Fundamental Research Funds for the Central Universities (Nos. 2017TS004, 2017TS006, and GK201704005)Supported by HZWTECH for providing computational facilities
文摘In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.
基金Supported by the National Natural Science Foundation of China(11671373).
文摘We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY14A030001)。
文摘We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金Project supported by the Youth Science and Technology Talent Project of Hunan Province of China (Grant No.2022RC1197)the National Natural Science Foundation of China (Grant No.52372260)。
文摘Grasping the underlying mechanisms behind the low lattice thermal conductivity of materials is essential for the efficient design and development of high-performance thermoelectric materials and thermal barrier coating materials.In this paper,we present a first-principles calculations of the phonon transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers.Both materials possess low lattice thermal conductivity,at least two orders of magnitude lower than graphene and h-BN.The room temperature thermal conductivity of Pb_(2)SbAs(0.91 W/m K)is only a quarter of that of Pb_(2)PAs(3.88 W/m K).We analyze in depth the bonding,lattice dynamics,and phonon mode level information of these materials.Ultimately,it is determined that the synergistic effect of low group velocity due to weak bonding and strong phonon anharmonicity is the fundamental cause of the intrinsic low thermal conductivity in these Janus structures.Relative regular residual analysis further indicates that the four-phonon processes are limited in Pb_(2)PAs and Pb_(2)SbAs,and the three-phonon scattering is sufficient to describe their anharmonicity.In this study,the thermal transport properties of Janus Pb_(2)PAs and Pb_(2)SbAs monolayers are illuminated based on fundamental physical mechanisms,and the low lattice thermal conductivity endows them with the potential applications in the field of thermal barriers and thermoelectrics.
文摘Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.
基金supported by the National Natural Science Foundation of China(the Key Project,52131201Science Fund for Creative Research Groups,52221005)+1 种基金the China Scholarship Councilthe Joint Laboratory for Internet of Vehicles,Ministry of Education–China MOBILE Communications Corporation。
文摘This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.
基金Project supported by the Natural Science Foundation of WIUCAS (Grant Nos.WIUCASQD2023004 and WIUCASQD2022025)the National Natural Science Foundation of China (Grant Nos.12304006,12104452,12022508,12074394,and 12374061)+1 种基金the Shanghai Science and Technology Innovation Action Plan (Grant No.23JC1401400)the Natural Science Foundation of Wenzhou (Grant No.L2023005)。
文摘Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.