This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little e...This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little easier.This new nanoprinting process?uses gold-plated pyramids,an LED light,and photochemical reactions to print more organic material on the surface of one single biochip than ever before.The technique uses an array of polymer pyramids that are covered in gold and mounted onto an atomic force mi-展开更多
It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break t...It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break this stereotype in 1987,followed by Catherine Delano-Smith and Chet Van Duzer who discovered a few Renaissance maps and two Qing dynasty maps that showed use of hand stamps.Inspired by these findings,this paper explores the stamped map signs in ten Chinese maps,three Japanese maps,and three Korean maps.By analyzing each map and each type of stamp,this paper provides more examples of this research,broadens the research horizons and geographical area,and demonstrates that use of stamps in manuscript maps was invented independently among people of different regions and civilizations as a result of human nature.展开更多
presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabrica...presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabricated using 3 D printing technique by layering of extruded polylactic acid( PLA) material and mounting FBG sensor at the center of each sensing unit for pressure measurement. Performance of the sensing system was validated by applying load step by step as well as cyclic load on FBG pressure sensors. A simulation study was carried out using the sensing platform to assess foot plantar pressure distribution arises from weight gaining and losing processes of pregnant woman. The monitored four different foot positions such as first metatarsus,second metatarsus,mid-foot and heel exhibited obvious differences during testing process. Foot plantar pressure of heel was 1. 7 times of the pressure occurred at the first and second metatarsus( fore-foot),while there was limited pressure occurred at the mid-foot position during weight gaining process of a female subject. The occurred pressures at the two metatarsus areas were around 90%( pressure ratio) of heel and decreased continuously as the increase of subject weight,but weight losing process had very limited influence on this pressure ratio. Center of gravity of pregnant woman was found to shift backward substantially during the weighting gaining process,leading to a significant rise of the heel pressure. Hence, the protection of the heel position for female is highly important during both pregnancy and after baby delivery.展开更多
The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelastic...The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.展开更多
Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymer...Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymers are commonlyprocessed into porous scaffolds using conventional processing techniques,e.g.,saltleaching.However,these traditional techniques have shown unavoidable limitations andseveral shortcomings.For instance,tissue-engineered porous scaffolds with a complexthree-dimensional(3D)geometric architecture mimicking the complexity of theextracellular matrix of native tissues and with the ability to fit into irregular tissue defectscannot be produced using the conventional processing techniques.3D printing hasrecently emerged as an advanced processing technology that enables the processing ofbiomaterials into 3D porous scaffolds with highly complex architectures and tunableshapes to precisely fit into irregular and complex tissue defects.3D printing providescomputer-based layer-by-layer additive manufacturing processes of highly precise andcomplex 3D structures with well-defined porosity and controlled mechanical propertiesin a highly reproducible manner.Furthermore,3D printing technology provides anaccurate patient-specific tissue defect model and enables the fabrication of a patientspecifictissue-engineered porous scaffold with pre-customized properties.展开更多
In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices...In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.展开更多
文摘This nanoprinting process allows researchers to 3D print more material on a biochip than ever before,making it easier to study biomedical issues.Making biochips,a key technology in studying disease,just got a little easier.This new nanoprinting process?uses gold-plated pyramids,an LED light,and photochemical reactions to print more organic material on the surface of one single biochip than ever before.The technique uses an array of polymer pyramids that are covered in gold and mounted onto an atomic force mi-
文摘It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break this stereotype in 1987,followed by Catherine Delano-Smith and Chet Van Duzer who discovered a few Renaissance maps and two Qing dynasty maps that showed use of hand stamps.Inspired by these findings,this paper explores the stamped map signs in ten Chinese maps,three Japanese maps,and three Korean maps.By analyzing each map and each type of stamp,this paper provides more examples of this research,broadens the research horizons and geographical area,and demonstrates that use of stamps in manuscript maps was invented independently among people of different regions and civilizations as a result of human nature.
基金Fundamental Research Funds for the Central Universities,China(No.17D110116)Henan Key Laboratory of Textile Materials,ChinaNational Natural Science Foundation of China(No.41602352)
文摘presented an application of using 3 D printing technique for the design and fabrication of a novel fiber Bragg grating( FBG)based sensing platform for foot planar pressure measurement.Pressure sensing unit was fabricated using 3 D printing technique by layering of extruded polylactic acid( PLA) material and mounting FBG sensor at the center of each sensing unit for pressure measurement. Performance of the sensing system was validated by applying load step by step as well as cyclic load on FBG pressure sensors. A simulation study was carried out using the sensing platform to assess foot plantar pressure distribution arises from weight gaining and losing processes of pregnant woman. The monitored four different foot positions such as first metatarsus,second metatarsus,mid-foot and heel exhibited obvious differences during testing process. Foot plantar pressure of heel was 1. 7 times of the pressure occurred at the first and second metatarsus( fore-foot),while there was limited pressure occurred at the mid-foot position during weight gaining process of a female subject. The occurred pressures at the two metatarsus areas were around 90%( pressure ratio) of heel and decreased continuously as the increase of subject weight,but weight losing process had very limited influence on this pressure ratio. Center of gravity of pregnant woman was found to shift backward substantially during the weighting gaining process,leading to a significant rise of the heel pressure. Hence, the protection of the heel position for female is highly important during both pregnancy and after baby delivery.
基金financial support from the National Natural Science Foundation of China(Nos.52004137,52121003,51727807,12032013 and 11972209)Fundamental Research Funds for the Central Universities(No.2022XJAQ01)。
文摘The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.
文摘Processing biomaterials into porous scaffolds for bone tissueengineering is a critical and a key step in defining and controlling their physicochemical,mechanical,and biological properties.Biomaterials such as polymers are commonlyprocessed into porous scaffolds using conventional processing techniques,e.g.,saltleaching.However,these traditional techniques have shown unavoidable limitations andseveral shortcomings.For instance,tissue-engineered porous scaffolds with a complexthree-dimensional(3D)geometric architecture mimicking the complexity of theextracellular matrix of native tissues and with the ability to fit into irregular tissue defectscannot be produced using the conventional processing techniques.3D printing hasrecently emerged as an advanced processing technology that enables the processing ofbiomaterials into 3D porous scaffolds with highly complex architectures and tunableshapes to precisely fit into irregular and complex tissue defects.3D printing providescomputer-based layer-by-layer additive manufacturing processes of highly precise andcomplex 3D structures with well-defined porosity and controlled mechanical propertiesin a highly reproducible manner.Furthermore,3D printing technology provides anaccurate patient-specific tissue defect model and enables the fabrication of a patientspecifictissue-engineered porous scaffold with pre-customized properties.
文摘In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.