The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.Ho...The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets.展开更多
基金supported by the National Natural Science Founda-tion of China(Grant No.12172381)Leading Talents of Science and Technology in the Central Plain of China(Grant No.234200510016).
文摘The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets.