Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a ...Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.展开更多
For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the com...For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatch- ing rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.展开更多
At present,hundreds of cloud vendors in the global market provide various services based on a customer’s requirements.All cloud vendors are not the same in terms of the number of services,infrastructure availability,...At present,hundreds of cloud vendors in the global market provide various services based on a customer’s requirements.All cloud vendors are not the same in terms of the number of services,infrastructure availability,security strategies,cost per customer,and reputation in the market.Thus,software developers and organizations face a dilemma when choosing a suitable cloud vendor for their developmental activities.Thus,there is a need to evaluate various cloud service providers(CSPs)and platforms before choosing a suitable vendor.Already existing solutions are either based on simulation tools as per the requirements or evaluated concerning the quality of service attributes.However,they require more time to collect data,simulate and evaluate the vendor.The proposed work compares various CSPs in terms of major metrics,such as establishment,services,infrastructure,tools,pricing models,market share,etc.,based on the comparison,parameter ranking,and weightage allocated.Furthermore,the parameters are categorized depending on the priority level.The weighted average is calculated for each CSP,after which the values are sorted in descending order.The experimental results show the unbiased selection of CSPs based on the chosen parameters.The proposed parameter-ranking priority level weightage(PRPLW)algorithm simplifies the selection of the best-suited cloud vendor in accordance with the requirements of software development.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60704004the Fundamental Research Funds for the Central University under Grant No.HEUCFT1005
文摘Reconfigurability of the electrical network in a shipboard power system (SPS) after its failure is central to the restoration of power supply and improves survivability of an SPS. The navigational process creates a sequence of different operating conditions. The priority of some loads differs in changing operating conditions. After analyzing characteristics of typical SPS, a model was developed used a grade III switchboard and an environmental prioritizing agent (EPA) algorithm. This algorithm was chosen as it is logically and physically decentralized as well as multi-agent oriented. The EPA algorithm was used to decide on the dynamic load priority, then it selected the means to best meet the maximum power supply load. The simulation results showed that higher priority loads were the first to be restored. The system satisfied all necessary constraints, demonstrating the effectiveness and validity of the proposed method.
文摘For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatch- ing rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
文摘At present,hundreds of cloud vendors in the global market provide various services based on a customer’s requirements.All cloud vendors are not the same in terms of the number of services,infrastructure availability,security strategies,cost per customer,and reputation in the market.Thus,software developers and organizations face a dilemma when choosing a suitable cloud vendor for their developmental activities.Thus,there is a need to evaluate various cloud service providers(CSPs)and platforms before choosing a suitable vendor.Already existing solutions are either based on simulation tools as per the requirements or evaluated concerning the quality of service attributes.However,they require more time to collect data,simulate and evaluate the vendor.The proposed work compares various CSPs in terms of major metrics,such as establishment,services,infrastructure,tools,pricing models,market share,etc.,based on the comparison,parameter ranking,and weightage allocated.Furthermore,the parameters are categorized depending on the priority level.The weighted average is calculated for each CSP,after which the values are sorted in descending order.The experimental results show the unbiased selection of CSPs based on the chosen parameters.The proposed parameter-ranking priority level weightage(PRPLW)algorithm simplifies the selection of the best-suited cloud vendor in accordance with the requirements of software development.