Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's dec...Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's decision-making in the ultimatum game compared with the dictator game. The present functional magnetic resonance imaging study revealed that proposing fair offers in the dictator game elicited greater activation in the right supramarginal gyrus, right medial frontal gyrus and left anterior cingulate cortex compared with proposing fair offers in the ultimatum game in 23 Chinese undergraduate and graduate students from Beijing Normal University in China. However, greater activation was found in the right superior temporal gyrus and left cingulate gyrus for the reverse contrast. "The results indicate that proposing fair offers in the dictator game is more strongly associated with cognitive control and conflicting information processing compared with proposing fair offers in the ultimatum game.展开更多
A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time ...A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.展开更多
The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s ...The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.展开更多
In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternati...In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.展开更多
According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in eva...According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in evaluating the value of the employees in an enterprise. Consequently, a lot of employees might be laid off. Hence, this paper puts forward a two-stage method for decision-making to carry out a selective plan of buyout, based on the fuzzy synthetic evaluation involing many factors impacting on human resource. Moreover, a positive analysis is also given.展开更多
Background: The integration of relevant high-quality research evidence into the health decision and policy formulation process is a key strategy for improving health systems especially in developing countries such as ...Background: The integration of relevant high-quality research evidence into the health decision and policy formulation process is a key strategy for improving health systems especially in developing countries such as Zambia. However, the lack of capacity to understand and value research evidence by policy and decision makers makes it difficult for them to find and use research evidence in a timely manner even when motivated to do so. This study aimed to establish the views, attitudes and practices of policy makers on the use of research evidence in policy and decision-making process in Zambia. Methodology: This descriptive cross-sectional study was conducted in Lusaka, Zambia among selected public health decision and policy making institutions. A purposive sample of 21 consenting policy makers who were working in different positions in the Ministry of Health Headquarters, Provincial and District Health Offices, Health Professions Regulatory Bodies, United Nations Agencies, International Non-Governmental Organizations and University Deans from the University of Zambia participated in the study. A self-administered questionnaire was used to collect data. The IBM? SPSS? Statistics for Windows Version 20.0 was used for data analysis. Results: The concept of Evidence Informed Health Policy was not well understood such that only less than half (47.5%) of the participants reported having heard specifically about Evidence Informed Health Policy meanwhile almost two thirds (61.9%) reported that they used research evidence in decision making and policy formulation. Similar discrepancy was expressed in the understanding of and use of rapid response mechanisms such that although (47.6%) of the participants reported having heard about it, (57%) had never used rapid response mechanisms for deci-sion-making. With regard to the sources of information, about half (52.3) of the participants reported scholarly articles as their main source of evidence. Con-clusion and Recommendations: There is need for more sensitization and ca-pacity building among the decision and policy makers on the importance of using research evidence in decision and policy making process as incorporation of relevant high-quality research evidence into the health policy making pro-cess is a key strategy for improving health systems.展开更多
Objective:Cancer has one of the highest disease mortality rates.Families are very important in the treatment of people with cancer.By using a phenomenological design,this study aimed to explore the experience of famil...Objective:Cancer has one of the highest disease mortality rates.Families are very important in the treatment of people with cancer.By using a phenomenological design,this study aimed to explore the experience of families in caring for a person with cancer and to identify the needs of these families.Methods:First,eight interviews were under taken with family members selected through a purposive sampling method.Then,another three interviews were conducted for data validation.The collected data were analyzed using the framework method of analysis.Results:The core theme,“Prioritizing the efforts:Being aware of the best we could do for our family,”reflected family’s experiences of caring for a person with cancer and was underpinned by five themes:“Decisions to make,”“Keeping up the good support,”“Acknowledging the others’contributions,”“Assisting my family to alleviate the disease,”and“Adapting to the current situation.”Conclusions:The results suggest that building mutual trust and communication between family and healthcare professionals is vital in decision-making for people with cancer.Family may also work with the person in fulfilling their needs,without disregarding the needs of the family.When suppor ting the needs of people with diabetes,the family requires appropriate information,and thus,healthcare professionals wisely select which information can help the family make a decision regarding the treatment.After administering the treatment and providing information for people with cancer and their family,asking for feedback is required for evaluation.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
The analysis of cell loss rates in an ATM Mux with loss priorities is an important problem in the-study of traffic control in ATM networks. In this paper, the loss rates of the cells with different priorities in an AT...The analysis of cell loss rates in an ATM Mux with loss priorities is an important problem in the-study of traffic control in ATM networks. In this paper, the loss rates of the cells with different priorities in an ATM Mux are analyzed by approximating the actual input process with two-state MMDP and fluid flow technique, and the analytical expressions of the relation between the loss rates and the buffer size are obtained. Simulation shows that the approach is sulliciently accurate for applications.展开更多
In this paper,the criteria set related to the priority preorders of water resources projects is introduced.A fuzzy multiple criteria group decision-making model is established,which incorporates quantitative analysis,...In this paper,the criteria set related to the priority preorders of water resources projects is introduced.A fuzzy multiple criteria group decision-making model is established,which incorporates quantitative analysis,judgments,experience and preferences of decision-makers.The model is used in practice to determine the priority preorders of five water resources projects,and the results show that the best choice can supply more new employment,domestic water and irrigation water,and has better quality.展开更多
In the robot soccer competition platform, the cur- rent confrontation decision-making system suffers from dif- ficulties in optimization and adaptability. Therefore, we pro- pose a new self-adaptive decision-making (...In the robot soccer competition platform, the cur- rent confrontation decision-making system suffers from dif- ficulties in optimization and adaptability. Therefore, we pro- pose a new self-adaptive decision-making (SADM) strategy. SADM compensates for the restrictions of robot physical movement control by updating the task assignment and role assignment module using situation assessment techniques. It designs a self-adaptive role assignment model that assists the soccer robot in adapting to competition situations similar to how humans adapt in real time. Moreover, it also builds an accurate motion model for the robot in order to improve the competition ability of individual robot soccer. Experimental results show that SADM can adapt quickly and positively to new competition situations and has excellent performance in actual competition.展开更多
In China’s current educational fiscal decision making,problems are as follows:no law to trust or not abiding by available laws,absence of equity and efficiency,as well as the standardization of decision-making proced...In China’s current educational fiscal decision making,problems are as follows:no law to trust or not abiding by available laws,absence of equity and efficiency,as well as the standardization of decision-making procedures.It is necessary to set up effective fiscal decision-making mechanism in education and rationally devise reliable paths.展开更多
基金supported by the National Laboratory of Cognitive Neuroscience and Learning at Beijing Normal University (the 973 program),No. 2010CB8339004the National Natural Science Foundation of China,No. 30970911+1 种基金the Fundamental Research Fund for the Central Universities,No.SWJTU11BR192the Humanity and Social Science Youth foundation of Ministry of Education of China,No. 12YJC630317
文摘Previous studies have demonstrated that reactions to unfair offers in the ultimatum game are correlated with negative emotion. However, little is known about the difference in neural activity between a proposer's decision-making in the ultimatum game compared with the dictator game. The present functional magnetic resonance imaging study revealed that proposing fair offers in the dictator game elicited greater activation in the right supramarginal gyrus, right medial frontal gyrus and left anterior cingulate cortex compared with proposing fair offers in the ultimatum game in 23 Chinese undergraduate and graduate students from Beijing Normal University in China. However, greater activation was found in the right superior temporal gyrus and left cingulate gyrus for the reverse contrast. "The results indicate that proposing fair offers in the dictator game is more strongly associated with cognitive control and conflicting information processing compared with proposing fair offers in the ultimatum game.
基金Supported by the National Natural Science Foundation of China(No.61001049)Key Laboratory of Computer Architecture Opening Topic Fund Subsidization(CARCH201103)Beijing Natural Science Foundation(No.Z2002012201101)
文摘A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.
文摘The paper presents the simulation results of the comparison of three Queuing Mechanisms, First in First out (FIFO), Priority Queuing (PQ), and Weighted Fair Queuing (WFQ). Depending on their effects on the network’s Routers, the load of any algorithm of them over Router’s CPUs and memory usage, the delay occurred between routers when any algorithm has been used and the network application throughput. This comparison explains that, PQ doesn’t need high specification hardware (memory and CPU) but when used it is not fair, because it serves one application and ignore the other application and FIFO mechanism has smaller queuing delay, otherwise PQ has bigger delay.
文摘In presented fuzzy multi-attribute decision-making (FMADM) problems, the information about attribute weights is interval numbers and the decision maker (DM) has fuzzy complementary preference relation on alternatives. Firstly, the decision-making information based on the subjective preference information in the form of the fuzzy complementary judgment matrix is uniform by using a translation function. Then an objective programming model is established. Attribute weights are obtained by solving the model, thus the fuzzy overall values of alternatives are derived by using the additive weighting method. Secondly, the ranking approach of alternatives is proposed based on the degree of similarity between the fuzzy positive ideal solution of alternatives (FPISA) and the fuzzy overall values. The method can sufficiently utilize the objective information of alternatives and meet the subjective requirements of the DM as much as possible. It is easy to be operated and implemented on a computer. Finally, the proposed method is applied to the project evaluation in the venture investment.
文摘According to the modern theory of human resource management, the condition of buyout mainly depends on two variables of an employee: his interior value of product and exterior work reward. There exist shortages in evaluating the value of the employees in an enterprise. Consequently, a lot of employees might be laid off. Hence, this paper puts forward a two-stage method for decision-making to carry out a selective plan of buyout, based on the fuzzy synthetic evaluation involing many factors impacting on human resource. Moreover, a positive analysis is also given.
文摘Background: The integration of relevant high-quality research evidence into the health decision and policy formulation process is a key strategy for improving health systems especially in developing countries such as Zambia. However, the lack of capacity to understand and value research evidence by policy and decision makers makes it difficult for them to find and use research evidence in a timely manner even when motivated to do so. This study aimed to establish the views, attitudes and practices of policy makers on the use of research evidence in policy and decision-making process in Zambia. Methodology: This descriptive cross-sectional study was conducted in Lusaka, Zambia among selected public health decision and policy making institutions. A purposive sample of 21 consenting policy makers who were working in different positions in the Ministry of Health Headquarters, Provincial and District Health Offices, Health Professions Regulatory Bodies, United Nations Agencies, International Non-Governmental Organizations and University Deans from the University of Zambia participated in the study. A self-administered questionnaire was used to collect data. The IBM? SPSS? Statistics for Windows Version 20.0 was used for data analysis. Results: The concept of Evidence Informed Health Policy was not well understood such that only less than half (47.5%) of the participants reported having heard specifically about Evidence Informed Health Policy meanwhile almost two thirds (61.9%) reported that they used research evidence in decision making and policy formulation. Similar discrepancy was expressed in the understanding of and use of rapid response mechanisms such that although (47.6%) of the participants reported having heard about it, (57%) had never used rapid response mechanisms for deci-sion-making. With regard to the sources of information, about half (52.3) of the participants reported scholarly articles as their main source of evidence. Con-clusion and Recommendations: There is need for more sensitization and ca-pacity building among the decision and policy makers on the importance of using research evidence in decision and policy making process as incorporation of relevant high-quality research evidence into the health policy making pro-cess is a key strategy for improving health systems.
基金supported by Universitas Tanjungpura(No.3387/UN22.9/PG/2021)。
文摘Objective:Cancer has one of the highest disease mortality rates.Families are very important in the treatment of people with cancer.By using a phenomenological design,this study aimed to explore the experience of families in caring for a person with cancer and to identify the needs of these families.Methods:First,eight interviews were under taken with family members selected through a purposive sampling method.Then,another three interviews were conducted for data validation.The collected data were analyzed using the framework method of analysis.Results:The core theme,“Prioritizing the efforts:Being aware of the best we could do for our family,”reflected family’s experiences of caring for a person with cancer and was underpinned by five themes:“Decisions to make,”“Keeping up the good support,”“Acknowledging the others’contributions,”“Assisting my family to alleviate the disease,”and“Adapting to the current situation.”Conclusions:The results suggest that building mutual trust and communication between family and healthcare professionals is vital in decision-making for people with cancer.Family may also work with the person in fulfilling their needs,without disregarding the needs of the family.When suppor ting the needs of people with diabetes,the family requires appropriate information,and thus,healthcare professionals wisely select which information can help the family make a decision regarding the treatment.After administering the treatment and providing information for people with cancer and their family,asking for feedback is required for evaluation.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
文摘The analysis of cell loss rates in an ATM Mux with loss priorities is an important problem in the-study of traffic control in ATM networks. In this paper, the loss rates of the cells with different priorities in an ATM Mux are analyzed by approximating the actual input process with two-state MMDP and fluid flow technique, and the analytical expressions of the relation between the loss rates and the buffer size are obtained. Simulation shows that the approach is sulliciently accurate for applications.
文摘In this paper,the criteria set related to the priority preorders of water resources projects is introduced.A fuzzy multiple criteria group decision-making model is established,which incorporates quantitative analysis,judgments,experience and preferences of decision-makers.The model is used in practice to determine the priority preorders of five water resources projects,and the results show that the best choice can supply more new employment,domestic water and irrigation water,and has better quality.
文摘In the robot soccer competition platform, the cur- rent confrontation decision-making system suffers from dif- ficulties in optimization and adaptability. Therefore, we pro- pose a new self-adaptive decision-making (SADM) strategy. SADM compensates for the restrictions of robot physical movement control by updating the task assignment and role assignment module using situation assessment techniques. It designs a self-adaptive role assignment model that assists the soccer robot in adapting to competition situations similar to how humans adapt in real time. Moreover, it also builds an accurate motion model for the robot in order to improve the competition ability of individual robot soccer. Experimental results show that SADM can adapt quickly and positively to new competition situations and has excellent performance in actual competition.
文摘In China’s current educational fiscal decision making,problems are as follows:no law to trust or not abiding by available laws,absence of equity and efficiency,as well as the standardization of decision-making procedures.It is necessary to set up effective fiscal decision-making mechanism in education and rationally devise reliable paths.