Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to di...Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.展开更多
Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat...Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.展开更多
The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using comm...The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.展开更多
Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevit...Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevitable,and even worse,due to a trend of big-size cell design,typically such as 4680 and blade cells,which accelerated a battery failure during repeat lithiation and delithiation of cathodes.Inspire by that,two big-size pouch cells with big sizes,herein,are selected to reveal the ion-diffusion dependency of the cathodes at different locations.Interestingly,we find that the LiCoO_(2) pouch cell exhibits ~5 A h loss after 120 charge-discharge cycles,but a 15 A h loss is verified in a LiNixMnyCO_(1-x)-yO_(2)(NCM) cell.Synchrotron-based imaging analysis indicates that higher ion-diffusion rates in the LiCoO_(2)than that in the LiNixMnyCO_(1-x)-yO_(2)is the determined factor for the anisotropic cathode fading,which is responsible for a severe mechanical issue of particle damage,such as cracks and even pulverization,in the cathode materials.Meanwhile,we verify the different locations at the near-tab and bottom of the electrode make it worse due to the ion-diffusion kinetics and temperature,inducing a spatially uneven electrochemistry in the big-size pouch cell.The findings give an in-depth insight into pouch cell failure and make a guideline for high-energy cell design and development.展开更多
Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety perfo...Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. ...Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. The use of ambi-functional additive, which forms stable solid electrolyte interphase(SEI) simultaneously at both cathode and anode, is a key to enabling a dendrites-free and well-working high-voltage LIB. Herein, a novel ambi-functional additive, pentaerythritol disulfate(PEDS), at 1 wt% without any other additive is demonstrated. We show the feasibility and high impacts of PEDS in forming lithium sulfateincorporated robust SEI layers at NCM523 cathode and graphite anode in 1 Ah-level pouch cell under4.4 V, 25 °C and 0.1 C rate, which mitigates the high-voltage instability, metal-dissolution and cracks on NCM523 particles, and prevents Li-dendrites at graphite anode. Improved capacity retention of 83%after 300 cycles is thereby achieved, with respect to 69% with base electrolyte, offering a promising path toward the design of practical high-energy LIBs.展开更多
Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with ...Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery.展开更多
Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable comp...Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.展开更多
Blast pressure of C-H-O solvents on failed lithium-ion cells at the voltage range between 3.8 V and 4.18 V may be calculated by means of the simple semi-empirical equation, y = (Ia + Jb)/(Ka + Lb + Me), p is th...Blast pressure of C-H-O solvents on failed lithium-ion cells at the voltage range between 3.8 V and 4.18 V may be calculated by means of the simple semi-empirical equation, y = (Ia + Jb)/(Ka + Lb + Me), p is the initial density of solvent, Q is the chemical energy of explosion, v is the voltage. The values of a, b, c depend on C-H-O composition. Value of I, J, K, L, Mmay be estimated from the H20-CO2 arbitrary decomposition assumption. Blast pressure derived in this manner can provide preliminary protective estimation and it is compared with experiment results by adiabatic calorimeter.展开更多
As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-...As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.展开更多
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio...Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.展开更多
A capacity increase is often observed in the early stage of Li-ion battery cycling.This study explores the phenomena involved in the capacity increase from the full cell,electrodes,and materials perspective through a ...A capacity increase is often observed in the early stage of Li-ion battery cycling.This study explores the phenomena involved in the capacity increase from the full cell,electrodes,and materials perspective through a combination of non-destructive diagnostic methods in a full cell and post-mortem analysis in a coin cell.The results show an increase of 1%initial capacity for the battery aged at 100%depth of discharge(DOD)and 45℃.Furthermore,large DODs or high temperatures accelerate the capacity increase.From the incremental capacity and differential voltage(IC-DV)analysis,we concluded that the increased capacity in a full cell originates from the graphite anode.Furthermore,graphite/Li coin cells show an increased capacity for larger DODs and a decreased capacity for lower DODs,thus in agreement with the full cell results.Post-mortem analysis results show that a larger DOD enlarges the graphite dspace and separates the graphite layer structure,facilitating the Li+diffusion,hence increasing the battery capacity.展开更多
For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode mat...For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability.展开更多
A two-dimensional model for transport and the coupled electric field is applied to simulate a charging lithium-ion cell and investigate the effects of lithium concentration gradients within electrodes on cell performa...A two-dimensional model for transport and the coupled electric field is applied to simulate a charging lithium-ion cell and investigate the effects of lithium concentration gradients within electrodes on cell performance. The lithium concentration gradients within electrodes are affected by the cell geometry. Two different geometries are investigated: extending the length of the electrolyte past the edges of the electrodes and extending the length of the cathode past the edge of the anode. It is found that the electrolyte extension has little impact on the behavior of the electrodes, although it does increase the effective conductivity of the electrolyte in the edge region. However, the extension of the cathode past the edge of the anode, and the possibility for electrochemical reactions on the flooded electrode edges, are both found to impact the concentration gradients of lithium in electrodes and the current distribution within the electrolyte during charging. It is found that concentration gradients of lithium within electrodes may have stronger impacts on electrolytic current distributions, depending on the level of completeness of cell charge. This is because very different gradients of electric potential are expected from similar electrode gradients of lithium concentrations at different levels of cell charge, especially for the LixC6 cathode investigated in this study. This leads to the prediction of significant electric potential gradients along the electrolyte length during early cell charging, and a reduced risk of lithium deposition on the cathode edge during later cell charging, as seen experimentally by others.展开更多
Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging...Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging, especially for product development and diagnostics requiring quick turnaround and fast computation. In this study, a novel modeling approach is developed, utilizing supervised machine learning algorithms, to replicate the dynamic characteristics of the fuel cell-battery hybrid power system in a 2021 Toyota Mirai 2nd generation (Mirai 2) vehicle under various drive cycles. The entire data for this study is collected by instrumenting the Mirai vehicle with in-house data acquisition devices and tapping into the Mirai controller area network bus during chassis dynamometer tests. A multi-input - multi-output, feed-forward artificial neural network architecture is designed to predict not only the fuel cell attributes, such as average minimum cell voltage, coolant and cathode air outlet temperatures, but also the battery hybrid system attributes, including lithium-ion battery pack voltage and temperature with the help of 15 system operating parameters. Over 21,0000 data points on various drive cycles having combinations of transient and near steady-state driving conditions are collected, out of which around 15,000 points are used for training the network and 6,000 for the evaluation of the model performance. Various data filtration techniques and neural network calibration processes are explored to condition the data and understand the impact on model performance. The calibrated neural network accurately predicts the hybrid power system dynamics with an R-squared value greater than 0.98, demonstrating the potential of machine learning algorithms for system development and diagnostics.展开更多
基金funding from the ERC(Consolidator Grant MIGHTY,866005)the Innovate UK(UKRI:104174)Faraday Institution-Future CAT(FIRG017)and Degradation(FIRG001)
文摘Small coin cell batteries are predominantly used for testing lithium-ion batteries(LIBs)in academia because they require small amounts of material and are easy to assemble.However,insufficient attention is given to difference in cell performance that arises from the differences in format between coin cells used by academic researchers and pouch or cylindrical cells which are used in industry.In this article,we compare coin cells and pouch cells of different size with exactly the same electrode materials,electrolyte,and electrochemical conditions.We show the battery impedance changes substantially depending on the cell format using techniques including Electrochemical Impedance Spectroscopy(EIS)and Galvanostatic Intermittent Titration Technique(GITT).Using full cell NCA-graphite LIBs,we demonstrate that this difference in impedance has important knock-on effects on the battery rate performance due to ohmic polarization and the battery life time due to Li metal plating on the anode.We hope this work will help researchers getting a better idea of how small coin cell formats impact the cell performance and help predicting improvements that can be achieved by implementing larger cell formats.
基金supported by the Leading Edge Technology of Jiangsu Province (BK20220009, BK20202008)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
文摘The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.
基金supported by the Natural Science Foundation of Heilongjiang Province (LH2021E031)National Key Research and Development Program of China (2021YFB2011200)funds from Chongqing Research Institute of HIT。
文摘Battery electrochemistry in an actual cell is a complicated behavior influenced by the current density,uniformity,and ion-diffusion distance,etc.The anisotropism of the lithiation/delithiation degree is usually inevitable,and even worse,due to a trend of big-size cell design,typically such as 4680 and blade cells,which accelerated a battery failure during repeat lithiation and delithiation of cathodes.Inspire by that,two big-size pouch cells with big sizes,herein,are selected to reveal the ion-diffusion dependency of the cathodes at different locations.Interestingly,we find that the LiCoO_(2) pouch cell exhibits ~5 A h loss after 120 charge-discharge cycles,but a 15 A h loss is verified in a LiNixMnyCO_(1-x)-yO_(2)(NCM) cell.Synchrotron-based imaging analysis indicates that higher ion-diffusion rates in the LiCoO_(2)than that in the LiNixMnyCO_(1-x)-yO_(2)is the determined factor for the anisotropic cathode fading,which is responsible for a severe mechanical issue of particle damage,such as cracks and even pulverization,in the cathode materials.Meanwhile,we verify the different locations at the near-tab and bottom of the electrode make it worse due to the ion-diffusion kinetics and temperature,inducing a spatially uneven electrochemistry in the big-size pouch cell.The findings give an in-depth insight into pouch cell failure and make a guideline for high-energy cell design and development.
基金supported by the National Key R&D Program of China(2021YFB2402001)the China National Postdoctoral Program for Innovative Talents(BX20220286)+1 种基金the China Postdoctoral Science Foundation(2022T150615)supported by the Youth Innovation Promotion Association CAS(Y201768)。
文摘Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.
基金supported by the Ministry of Trade,Industry&Energy (A0022-00725)National Research Foundation grant (No.2019R1A2C1084024 and 2021R1A2C2005764) funded by the Ministry of Science and ICT of Korea+2 种基金Chungnam National Universitysupported by the Nano Material Technology Development Program through the National Research Foundation of Koreafunded by the Ministry of Science and ICT of Korea (2009-0082580)。
文摘Elevating the charge cut-off voltage beyond traditional 4.2 V is a commonly accepted technology to increase the energy density of Li-ion batteries(LIBs) but the risk of Li-dendrites and fire hazard increases as well. The use of ambi-functional additive, which forms stable solid electrolyte interphase(SEI) simultaneously at both cathode and anode, is a key to enabling a dendrites-free and well-working high-voltage LIB. Herein, a novel ambi-functional additive, pentaerythritol disulfate(PEDS), at 1 wt% without any other additive is demonstrated. We show the feasibility and high impacts of PEDS in forming lithium sulfateincorporated robust SEI layers at NCM523 cathode and graphite anode in 1 Ah-level pouch cell under4.4 V, 25 °C and 0.1 C rate, which mitigates the high-voltage instability, metal-dissolution and cracks on NCM523 particles, and prevents Li-dendrites at graphite anode. Improved capacity retention of 83%after 300 cycles is thereby achieved, with respect to 69% with base electrolyte, offering a promising path toward the design of practical high-energy LIBs.
基金supported by the National Natural Science Foundation of China (No.21972049)the Guangdong-Hong KongMacao Greater Bay Area Exchange Programs of SCNU (2022)。
文摘Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the South Korea grant funded by the Korean government(MSIT)(2021R1A4A2000934,2023R1A2C3004336)+1 种基金The computational part of the work was supported by Department of Chemical and Biomolecular Engineering,Institute of Emergent Materials,Sogang University,via NRF Korea grant 2015M3D3A1A01064929a generous supercomputing time from KISTI。
文摘Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.
文摘Blast pressure of C-H-O solvents on failed lithium-ion cells at the voltage range between 3.8 V and 4.18 V may be calculated by means of the simple semi-empirical equation, y = (Ia + Jb)/(Ka + Lb + Me), p is the initial density of solvent, Q is the chemical energy of explosion, v is the voltage. The values of a, b, c depend on C-H-O composition. Value of I, J, K, L, Mmay be estimated from the H20-CO2 arbitrary decomposition assumption. Blast pressure derived in this manner can provide preliminary protective estimation and it is compared with experiment results by adiabatic calorimeter.
基金partially supported by the National Natural Science Foundation of China (grant no. 22021001, 22179111)the Ministry of Science and Technology of China (grant no. 2021YFA1201900)+3 种基金the Basic Research Program of Tan Kah Kee Innovation Laboratory (grant no. RD2021070401)the Principal Fund from Xiamen University (grant no. 20720210015)the Fundamental Research Funds for the Central Universities (grant no. 20720220010)the National Natural Science Foundation of China (grant no. 22202082)。
文摘As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.
文摘Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell.
基金supported by a grant from the China Scholarship Council(202006370035 and 202006220024)supported by the National Natural Science Foundation of China(52107229)。
文摘A capacity increase is often observed in the early stage of Li-ion battery cycling.This study explores the phenomena involved in the capacity increase from the full cell,electrodes,and materials perspective through a combination of non-destructive diagnostic methods in a full cell and post-mortem analysis in a coin cell.The results show an increase of 1%initial capacity for the battery aged at 100%depth of discharge(DOD)and 45℃.Furthermore,large DODs or high temperatures accelerate the capacity increase.From the incremental capacity and differential voltage(IC-DV)analysis,we concluded that the increased capacity in a full cell originates from the graphite anode.Furthermore,graphite/Li coin cells show an increased capacity for larger DODs and a decreased capacity for lower DODs,thus in agreement with the full cell results.Post-mortem analysis results show that a larger DOD enlarges the graphite dspace and separates the graphite layer structure,facilitating the Li+diffusion,hence increasing the battery capacity.
基金Supported by the National Natural Science Foundation of China(NSFC Grants21176054 and 21271058)
文摘For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability.
文摘A two-dimensional model for transport and the coupled electric field is applied to simulate a charging lithium-ion cell and investigate the effects of lithium concentration gradients within electrodes on cell performance. The lithium concentration gradients within electrodes are affected by the cell geometry. Two different geometries are investigated: extending the length of the electrolyte past the edges of the electrodes and extending the length of the cathode past the edge of the anode. It is found that the electrolyte extension has little impact on the behavior of the electrodes, although it does increase the effective conductivity of the electrolyte in the edge region. However, the extension of the cathode past the edge of the anode, and the possibility for electrochemical reactions on the flooded electrode edges, are both found to impact the concentration gradients of lithium in electrodes and the current distribution within the electrolyte during charging. It is found that concentration gradients of lithium within electrodes may have stronger impacts on electrolytic current distributions, depending on the level of completeness of cell charge. This is because very different gradients of electric potential are expected from similar electrode gradients of lithium concentrations at different levels of cell charge, especially for the LixC6 cathode investigated in this study. This leads to the prediction of significant electric potential gradients along the electrolyte length during early cell charging, and a reduced risk of lithium deposition on the cathode edge during later cell charging, as seen experimentally by others.
文摘Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging, especially for product development and diagnostics requiring quick turnaround and fast computation. In this study, a novel modeling approach is developed, utilizing supervised machine learning algorithms, to replicate the dynamic characteristics of the fuel cell-battery hybrid power system in a 2021 Toyota Mirai 2nd generation (Mirai 2) vehicle under various drive cycles. The entire data for this study is collected by instrumenting the Mirai vehicle with in-house data acquisition devices and tapping into the Mirai controller area network bus during chassis dynamometer tests. A multi-input - multi-output, feed-forward artificial neural network architecture is designed to predict not only the fuel cell attributes, such as average minimum cell voltage, coolant and cathode air outlet temperatures, but also the battery hybrid system attributes, including lithium-ion battery pack voltage and temperature with the help of 15 system operating parameters. Over 21,0000 data points on various drive cycles having combinations of transient and near steady-state driving conditions are collected, out of which around 15,000 points are used for training the network and 6,000 for the evaluation of the model performance. Various data filtration techniques and neural network calibration processes are explored to condition the data and understand the impact on model performance. The calibrated neural network accurately predicts the hybrid power system dynamics with an R-squared value greater than 0.98, demonstrating the potential of machine learning algorithms for system development and diagnostics.