With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou...With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders...With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.展开更多
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.展开更多
The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algori...The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.展开更多
With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing co...With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.展开更多
In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protectio...In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV.展开更多
With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issu...With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.展开更多
Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemin...Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.展开更多
With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet a...With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography.For a given group of medical images of one patient,DenseNet is used to regroup the images based on feature similarity comparison.Then the mapping indexes can be constructed based on LBP feature and hash generation.After mapping the privacy information with the hash sequences,the corresponding mapped indexes of secret information will be packed together with the medical images group and released to the authorized user.The user can extract the privacy information successfully with a similar method of feature analysis and index construction.The simulation results show good performance of robustness.And the hiding success rate also shows good feasibility and practicability for application.Since the medical images are kept original without embedding and modification,the performance of crack resistance is outstanding and can keep better quality for diagnosis compared with traditional schemes with data embedding.展开更多
Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and pro...Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.展开更多
With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal p...With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time.展开更多
Decentralized identity authentication is generally based on blockchain, with the protection of user privacy as the core appeal. But traditional decentralized credential system requires users to show all the informatio...Decentralized identity authentication is generally based on blockchain, with the protection of user privacy as the core appeal. But traditional decentralized credential system requires users to show all the information of the entire credential to the verifier, resulting in unnecessary overexposure of personal information. From the perspective of user privacy, this paper proposed a verifiable credential scheme with selective disclosure based on BLS (Bohen- Lynn-Shacham) aggregate signature. Instead of signing the credentials, we sign the claims in the credentials. When the user needs to present the credential to verifier, the user can select a part of but not all claims to be presented. To reduce the number of signatures of claims after selective disclosure, BLS aggregate signature is achieved to aggregate signatures of claims into one signature. In addition, our scheme also supports the aggregation of credentials from different users. As a result, verifier only needs to verify one signature in the credential to achieve the purpose of batch verification of credentials. We analyze the security of our aggregate signature scheme, which can effectively resist aggregate signature forgery attack and credential theft attack. The simulation results show that our selective disclosure scheme based on BLS aggregate signature is acceptable in terms of verification efficiency, and can reduce the storage cost and communication overhead. As a result, our scheme is suitable for blockchain, which is strict on bandwidth and storage overhead.展开更多
In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Con...In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Consequently,privacy protection and trust establishment become important in network interactions.In order to protect privacy while facilitating effective interactions,we propose a trust-based privacy protection method.Our main contributions in this paper are as follows:(1)We introduce a novel concept of k-sensitive privacy as a measure to assess the potential threat of inferring privacy;(2)According to trust and k-sensitive privacy evaluation,our proposed method can choose appropriate interaction patterns with lower degree of inferring privacy threat;(3)By considering interaction patterns for privacy protection,our proposed method can overcome the shortcomings of some current privacy protection methods which may result in low interaction success rate.Simulation results show that our method can achieve effective interactions with less privacy loss.展开更多
Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regul...Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models.展开更多
Most visual privacy protection methods only hide the identity information of the face images,but the expression,behavior and some other information,which are of great significant in the live broadcast and other scenar...Most visual privacy protection methods only hide the identity information of the face images,but the expression,behavior and some other information,which are of great significant in the live broadcast and other scenarios,are also destroyed by the privacy protection process.To this end,this paper introduces a method to remove the identity information while preserving the expression information by performing multi-mode discriminant analysis on the images normalized with AAM algorithm.The face images are decomposed into mutually orthogonal subspaces corresponding to face attributes such as gender,race and expression,each of which owns related characteristic parameters.Then,the expression parameter is preserves to keep the facial expression information while others parameters,including gender and race,are modified to protect face privacy.The experiments show that this method yields well performance on both data utility and privacy protection.展开更多
Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage ...Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.展开更多
With the rapid increase in demand for data trustworthiness and data security,distributed data storage technology represented by blockchain has received unprecedented attention.These technologies have been suggested fo...With the rapid increase in demand for data trustworthiness and data security,distributed data storage technology represented by blockchain has received unprecedented attention.These technologies have been suggested for various uses because of their remarkable ability to offer decentralization,high autonomy,full process traceability,and tamper resistance.Blockchain enables the exchange of information and value in an untrusted environment.There has been a significant increase in attention to the confidentiality and privacy preservation of blockchain technology.Ensuring data privacy is a critical concern in cryptography,and one of the most important protocols used to achieve this is the secret-sharing method.By dividing the secret into shares and distributing them among multiple parties,no one can access the secret without the cooperation of the other parties.However,Attackers with quantum computers in the future can execute Grover’s and Shor’s algorithms on quantum computers that can break or reduce the currently widely used cryptosystems.Furthermore,centralized management of keys increases the risk of key leakage.This paper proposed a post-quantum threshold algo-rithm to reduce the risk of data privacy leakage in blockchain Systems.This algorithm uses distributed key management technology to reduce the risk of individual node private key leakage and provide post-quantum security.The proposed privacy-preserving cryptographic algorithm provides a post-quantum threshold architecture for managing data,which involves defining users and interaction processes within the system.This paper applies a linear secret-sharing solution to partition the private key of the Number Theory Research Unit(NTRU)algorithm into n parts.It constructs a t–n threshold that allows recovery of the plaintext only when more than t nodes participate in decryption.The characteristic of a threshold makes the scheme resistant to collusion attacks from members whose combined credibility is less than the threshold.This mitigates the risk of single-point private key leakage.During the threshold decryption process,the private key information of the nodes will not be leaked.In addition,the fact that the threshold algorithm is founded on the NTRU lattice enables it to withstand quantum attacks,thus enhancing its security.According to the analysis,the proposed scheme provides superior protection compared to currently availablemethods.This paper provides postquantum security solutions for data security protection of blockchain,which will enrich the use of blockchain in scenarios with strict requirements for data privacy protection.展开更多
In edge computing,a reasonable edge resource bidding mechanism can enable edge providers and users to obtain benefits in a relatively fair fashion.To maximize such benefits,this paper proposes a dynamic multiattribute...In edge computing,a reasonable edge resource bidding mechanism can enable edge providers and users to obtain benefits in a relatively fair fashion.To maximize such benefits,this paper proposes a dynamic multiattribute resource bidding mechanism(DMRBM).Most of the previous work mainly relies on a third-party agent to exchange information to gain optimal benefits.It isworth noting thatwhen edge providers and users trade with thirdparty agents which are not entirely reliable and trustworthy,their sensitive information is prone to be leaked.Moreover,the privacy protection of edge providers and users must be considered in the dynamic pricing/transaction process,which is also very challenging.Therefore,this paper first adopts a privacy protection algorithm to prevent sensitive information from leakage.On the premise that the sensitive data of both edge providers and users are protected,the prices of providers fluctuate within a certain range.Then,users can choose appropriate edge providers by the price-performance ratio(PPR)standard and the reward of lower price(LPR)standard according to their demands.The two standards can be evolved by two evaluation functions.Furthermore,this paper employs an approximate computing method to get an approximate solution of DMRBM in polynomial time.Specifically,this paper models the bidding process as a non-cooperative game and obtains the approximate optimal solution based on two standards according to the game theory.Through the extensive experiments,this paper demonstrates that the DMRBM satisfies the individual rationality,budget balance,and privacy protection and it can also increase the task offloading rate and the system benefits.展开更多
The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,...The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,to match the driver closest to the passenger,it is often necessary to process the location information of the passenger and driver,which poses a considerable threat to privacy disclosure to the passenger and driver.Targeting these issues,in this paper,by combining blockchain and Paillier homomorphic encryption algorithm,we design a secure blockchain-enabled IoV scheme with privacy protection for online car-hailing.In this scheme,firstly,we propose an encryp-tion scheme based on the lattice.Thus,the location information of passengers and drivers is encrypted in this system.Secondly,by introducing Paillier homomorphic encryption algorithm,the location matching of passengers and drivers is carried out in the ciphertext state to protect their location privacy.At last,blockchain technology is used to record the transactions in online car-hailing,which can provide a security guarantee for passengers and drivers.And we further analyze the security and performance of this scheme.Compared with other schemes,the experimental results show that the proposed scheme can protect the user’s location privacy and have a better performance.展开更多
基金sponsored by the National Natural Science Foundation of China under grant number No. 62172353, No. 62302114, No. U20B2046 and No. 62172115Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No. 1311022+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No. 17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108
文摘With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
基金supported in part by the National Natural Science Foundation of China under Grant U1905211,Grant 61872088,Grant 62072109,Grant 61872090,and Grant U1804263in part by the Guangxi Key Laboratory of Trusted Software under Grant KX202042+3 种基金in part by the Science and Technology Major Support Program of Guizhou Province under Grant 20183001in part by the Science and Technology Program of Guizhou Province under Grant 20191098in part by the Project of High-level Innovative Talents of Guizhou Province under Grant 20206008in part by the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province under Grant ZCL21015.
文摘With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.
文摘The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.
基金This work was supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.Conflicts of Interest:The aut。
文摘The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.
基金This work has been partly supported by the National Natural Science Foundation of China under Grant No.61702212the Fundamental Research Funds for the Central Universities under Grand NO.CCNU19TS017.
文摘With the rapid development of the Internet of Things(IoT),Location-Based Services(LBS)are becoming more and more popular.However,for the users being served,how to protect their location privacy has become a growing concern.This has led to great difficulty in establishing trust between the users and the service providers,hindering the development of LBS for more comprehensive functions.In this paper,we first establish a strong identity verification mechanism to ensure the authentication security of the system and then design a new location privacy protection mechanism based on the privacy proximity test problem.This mechanism not only guarantees the confidentiality of the user s information during the subsequent information interaction and dynamic data transmission,but also meets the service provider's requirements for related data.
基金This work is supported by Major Scientific and Technological Special Project of Guizhou Province(20183001)Research on the education mode for complicate skill students in new media with cross specialty integration(22150117092)+2 种基金Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ014)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ019)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ022).
文摘In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV.
基金financially supported by the National Natural Science Foundation of China(No.61303216,No.61272457,No.U1401251,and No.61373172)the National High Technology Research and Development Program of China(863 Program)(No.2012AA013102)National 111 Program of China B16037 and B08038
文摘With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.
基金funded by the High-Quality and Cutting-Edge Discipline Construction Project for Universities in Beijing (Internet Information,Communication University of China).
文摘Multi-Source data plays an important role in the evolution of media convergence.Its fusion processing enables the further mining of data and utilization of data value and broadens the path for the sharing and dissemination of media data.However,it also faces serious problems in terms of protecting user and data privacy.Many privacy protectionmethods have been proposed to solve the problemof privacy leakage during the process of data sharing,but they suffer fromtwo flaws:1)the lack of algorithmic frameworks for specific scenarios such as dynamic datasets in the media domain;2)the inability to solve the problem of the high computational complexity of ciphertext in multi-source data privacy protection,resulting in long encryption and decryption times.In this paper,we propose a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,which solves the privacy protection problem ofmulti-source heterogeneous data in the dissemination ofmedia and reduces ciphertext processing time.We deployed the proposedmethod on theHyperledger platformfor testing and compared it with the privacy protection schemes based on k-anonymity and differential privacy.The experimental results showthat the key generation,encryption,and decryption times of the proposedmethod are lower than those in data privacy protection methods based on k-anonymity technology and differential privacy technology.This significantly reduces the processing time ofmulti-source data,which gives it potential for use in many applications.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,and 2019SK2022,author H.T,http://kjt.hunan.gov.cn/+4 种基金in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,and Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the National Natural Science Foundation of Hunan under Grant 2019JJ50866,author L.T,2020JJ4140,author Y.T,and 2020JJ4141,author X.X,http://kjt.hunan.gov.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/and in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/.
文摘With the development of the internet of medical things(IoMT),the privacy protection problem has become more and more critical.In this paper,we propose a privacy protection scheme for medical images based on DenseNet and coverless steganography.For a given group of medical images of one patient,DenseNet is used to regroup the images based on feature similarity comparison.Then the mapping indexes can be constructed based on LBP feature and hash generation.After mapping the privacy information with the hash sequences,the corresponding mapped indexes of secret information will be packed together with the medical images group and released to the authorized user.The user can extract the privacy information successfully with a similar method of feature analysis and index construction.The simulation results show good performance of robustness.And the hiding success rate also shows good feasibility and practicability for application.Since the medical images are kept original without embedding and modification,the performance of crack resistance is outstanding and can keep better quality for diagnosis compared with traditional schemes with data embedding.
基金supported by the National Natural Science Foundation of China(Grant No.61762033)Hainan Provincial Natural Science Foundation of China(Grant Nos.2019RC041 and 2019RC098)+2 种基金Opening Project of Shanghai Trusted Industrial Control Platform(Grant No.TICPSH202003005-ZC)Ministry of Education Humanities and Social Sciences Research Program Fund Project(Grant No.19YJA710010)Zhejiang Public Welfare Technology Research(Grant No.LGF18F020019).
文摘Nowadays,as lightweight mobile clients become more powerful and widely used,more and more information is stored on lightweight mobile clients,user sensitive data privacy protection has become an urgent concern and problem to be solved.There has been a corresponding rise of security solutions proposed by researchers,however,the current security mechanisms on lightweight mobile clients are proven to be fragile.Due to the fact that this research field is immature and still unexplored in-depth,with this paper,we aim to provide a structured and comprehensive study on privacy protection using trusted execution environment(TEE)for lightweight mobile clients.This paper presents a highly effective and secure lightweight mobile client privacy protection system that utilizes TEE to provide a new method for privacy protection.In particular,the prototype of Lightweight Mobile Clients Privacy Protection Using Trusted Execution Environments(LMCPTEE)is built using Intel software guard extensions(SGX)because SGX can guarantee the integrity,confidentiality,and authenticity of private data.By putting lightweight mobile client critical data on SGX,the security and privacy of client data can be greatly improved.We design the authentication mechanism and privacy protection strategy based on SGX to achieve hardware-enhanced data protection and make a trusted connection with the lightweight mobile clients,thus build the distributed trusted system architecture.The experiment demonstrates that without relying on the performance of the blockchain,the LMCPTEE is practical,feasible,low-performance overhead.It can guarantee the privacy and security of lightweight mobile client private data.
基金supported by the Major science and technology project of Hainan Province(Grant No.ZDKJ2020012)National Natural Science Foundation of China(Grant No.62162024 and 62162022)Key Projects in Hainan Province(Grant ZDYF2021GXJS003 and Grant ZDYF2020040).
文摘With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time.
文摘Decentralized identity authentication is generally based on blockchain, with the protection of user privacy as the core appeal. But traditional decentralized credential system requires users to show all the information of the entire credential to the verifier, resulting in unnecessary overexposure of personal information. From the perspective of user privacy, this paper proposed a verifiable credential scheme with selective disclosure based on BLS (Bohen- Lynn-Shacham) aggregate signature. Instead of signing the credentials, we sign the claims in the credentials. When the user needs to present the credential to verifier, the user can select a part of but not all claims to be presented. To reduce the number of signatures of claims after selective disclosure, BLS aggregate signature is achieved to aggregate signatures of claims into one signature. In addition, our scheme also supports the aggregation of credentials from different users. As a result, verifier only needs to verify one signature in the credential to achieve the purpose of batch verification of credentials. We analyze the security of our aggregate signature scheme, which can effectively resist aggregate signature forgery attack and credential theft attack. The simulation results show that our selective disclosure scheme based on BLS aggregate signature is acceptable in terms of verification efficiency, and can reduce the storage cost and communication overhead. As a result, our scheme is suitable for blockchain, which is strict on bandwidth and storage overhead.
基金research funding from the Beijing Education Commission under Grant No. KM201010005027National Natural Science Foundation of China under Grant No. 61074128National Social Science Foundation of China under Grant No. 07CTQ010
文摘In network environments,before meaningful interactions can begin,trust may need to be established between two interactive entities in which an entity may ask the other to provide some information involving privacy.Consequently,privacy protection and trust establishment become important in network interactions.In order to protect privacy while facilitating effective interactions,we propose a trust-based privacy protection method.Our main contributions in this paper are as follows:(1)We introduce a novel concept of k-sensitive privacy as a measure to assess the potential threat of inferring privacy;(2)According to trust and k-sensitive privacy evaluation,our proposed method can choose appropriate interaction patterns with lower degree of inferring privacy threat;(3)By considering interaction patterns for privacy protection,our proposed method can overcome the shortcomings of some current privacy protection methods which may result in low interaction success rate.Simulation results show that our method can achieve effective interactions with less privacy loss.
基金supported by National Key R&D Program of China(No.2020YFC2006602)National Natural Science Foundation of China(Nos.62172324,62072324,61876217,6187612)+2 种基金University Natural Science Foundation of Jiangsu Province(No.21KJA520005)Primary Research and Development Plan of Jiangsu Province(No.BE2020026)Natural Science Foundation of Jiangsu Province(No.BK20190942).
文摘Most studies have conducted experiments on predicting energy consumption by integrating data formodel training.However, the process of centralizing data can cause problems of data leakage.Meanwhile,many laws and regulationson data security and privacy have been enacted, making it difficult to centralize data, which can lead to a datasilo problem. Thus, to train the model while maintaining user privacy, we adopt a federated learning framework.However, in all classical federated learning frameworks secure aggregation, the Federated Averaging (FedAvg)method is used to directly weight the model parameters on average, which may have an adverse effect on te model.Therefore, we propose the Federated Reinforcement Learning (FedRL) model, which consists of multiple userscollaboratively training the model. Each household trains a local model on local data. These local data neverleave the local area, and only the encrypted parameters are uploaded to the central server to participate in thesecure aggregation of the global model. We improve FedAvg by incorporating a Q-learning algorithm to assignweights to each locally uploaded local model. And the model has improved predictive performance. We validatethe performance of the FedRL model by testing it on a real-world dataset and compare the experimental results withother models. The performance of our proposed method in most of the evaluation metrics is improved comparedto both the centralized and distributed models.
文摘Most visual privacy protection methods only hide the identity information of the face images,but the expression,behavior and some other information,which are of great significant in the live broadcast and other scenarios,are also destroyed by the privacy protection process.To this end,this paper introduces a method to remove the identity information while preserving the expression information by performing multi-mode discriminant analysis on the images normalized with AAM algorithm.The face images are decomposed into mutually orthogonal subspaces corresponding to face attributes such as gender,race and expression,each of which owns related characteristic parameters.Then,the expression parameter is preserves to keep the facial expression information while others parameters,including gender and race,are modified to protect face privacy.The experiments show that this method yields well performance on both data utility and privacy protection.
基金supported by the National Key Research and Development Program of China (2021YFE0105500)the National Natural Science Foundation of China (61801166).
文摘Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.
基金supported by the National Key R&D Program of China(2022YFB2703400).
文摘With the rapid increase in demand for data trustworthiness and data security,distributed data storage technology represented by blockchain has received unprecedented attention.These technologies have been suggested for various uses because of their remarkable ability to offer decentralization,high autonomy,full process traceability,and tamper resistance.Blockchain enables the exchange of information and value in an untrusted environment.There has been a significant increase in attention to the confidentiality and privacy preservation of blockchain technology.Ensuring data privacy is a critical concern in cryptography,and one of the most important protocols used to achieve this is the secret-sharing method.By dividing the secret into shares and distributing them among multiple parties,no one can access the secret without the cooperation of the other parties.However,Attackers with quantum computers in the future can execute Grover’s and Shor’s algorithms on quantum computers that can break or reduce the currently widely used cryptosystems.Furthermore,centralized management of keys increases the risk of key leakage.This paper proposed a post-quantum threshold algo-rithm to reduce the risk of data privacy leakage in blockchain Systems.This algorithm uses distributed key management technology to reduce the risk of individual node private key leakage and provide post-quantum security.The proposed privacy-preserving cryptographic algorithm provides a post-quantum threshold architecture for managing data,which involves defining users and interaction processes within the system.This paper applies a linear secret-sharing solution to partition the private key of the Number Theory Research Unit(NTRU)algorithm into n parts.It constructs a t–n threshold that allows recovery of the plaintext only when more than t nodes participate in decryption.The characteristic of a threshold makes the scheme resistant to collusion attacks from members whose combined credibility is less than the threshold.This mitigates the risk of single-point private key leakage.During the threshold decryption process,the private key information of the nodes will not be leaked.In addition,the fact that the threshold algorithm is founded on the NTRU lattice enables it to withstand quantum attacks,thus enhancing its security.According to the analysis,the proposed scheme provides superior protection compared to currently availablemethods.This paper provides postquantum security solutions for data security protection of blockchain,which will enrich the use of blockchain in scenarios with strict requirements for data privacy protection.
基金supported in part by National Natural Science Foundation of China under Grant No.62172349,62032020,and 62172350the Research Foundation of Education Bureau of Hunan Province under Grant No.21B0139+1 种基金the National Key Research and Development Program of China under Grant 2021YFB3101200Hunan Science and Technology Planning Project under Grant No.2019RS3019.
文摘In edge computing,a reasonable edge resource bidding mechanism can enable edge providers and users to obtain benefits in a relatively fair fashion.To maximize such benefits,this paper proposes a dynamic multiattribute resource bidding mechanism(DMRBM).Most of the previous work mainly relies on a third-party agent to exchange information to gain optimal benefits.It isworth noting thatwhen edge providers and users trade with thirdparty agents which are not entirely reliable and trustworthy,their sensitive information is prone to be leaked.Moreover,the privacy protection of edge providers and users must be considered in the dynamic pricing/transaction process,which is also very challenging.Therefore,this paper first adopts a privacy protection algorithm to prevent sensitive information from leakage.On the premise that the sensitive data of both edge providers and users are protected,the prices of providers fluctuate within a certain range.Then,users can choose appropriate edge providers by the price-performance ratio(PPR)standard and the reward of lower price(LPR)standard according to their demands.The two standards can be evolved by two evaluation functions.Furthermore,this paper employs an approximate computing method to get an approximate solution of DMRBM in polynomial time.Specifically,this paper models the bidding process as a non-cooperative game and obtains the approximate optimal solution based on two standards according to the game theory.Through the extensive experiments,this paper demonstrates that the DMRBM satisfies the individual rationality,budget balance,and privacy protection and it can also increase the task offloading rate and the system benefits.
基金supported by National Key R&D Program of China(Grant No.2020YFB1805403)Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)+1 种基金Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ021,2018BDKFJJ020,2017BDKFJJ015,2018BDKFJJ008)the Fundamental Research Funds for the Central Universities(CUC210A003).
文摘The car-hailing platform based on Internet of Vehicles(IoV)tech-nology greatly facilitates passengers’daily car-hailing,enabling drivers to obtain orders more efficiently and obtain more significant benefits.However,to match the driver closest to the passenger,it is often necessary to process the location information of the passenger and driver,which poses a considerable threat to privacy disclosure to the passenger and driver.Targeting these issues,in this paper,by combining blockchain and Paillier homomorphic encryption algorithm,we design a secure blockchain-enabled IoV scheme with privacy protection for online car-hailing.In this scheme,firstly,we propose an encryp-tion scheme based on the lattice.Thus,the location information of passengers and drivers is encrypted in this system.Secondly,by introducing Paillier homomorphic encryption algorithm,the location matching of passengers and drivers is carried out in the ciphertext state to protect their location privacy.At last,blockchain technology is used to record the transactions in online car-hailing,which can provide a security guarantee for passengers and drivers.And we further analyze the security and performance of this scheme.Compared with other schemes,the experimental results show that the proposed scheme can protect the user’s location privacy and have a better performance.