期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques
1
作者 Burak Cem Kara Can Eyüpoglu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1515-1535,共21页
Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off betw... Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area.When existing approaches are investigated,one of the most significant difficulties discovered is the presence of outlier data in the datasets.Outlier data has a negative impact on data utility.Furthermore,k-anonymity algorithms,which are commonly used in the literature,do not provide adequate protection against outlier data.In this study,a new data anonymization algorithm is devised and tested for boosting data utility by incorporating an outlier data detection mechanism into the Mondrian algorithm.The connectivity-based outlier factor(COF)algorithm is used to detect outliers.Mondrian is selected because of its capacity to anonymize multidimensional data while meeting the needs of real-world data.COF,on the other hand,is used to discover outliers in high-dimensional datasets with complicated structures.The proposed algorithm generates more equivalence classes than the Mondrian algorithm and provides greater data utility than previous algorithms based on k-anonymization.In addition,it outperforms other algorithms in the discernibility metric(DM),normalized average equivalence class size(Cavg),global certainty penalty(GCP),query error rate,classification accuracy(CA),and F-measure metrics.Moreover,the increase in the values of theGCPand error ratemetrics demonstrates that the proposed algorithm facilitates obtaining higher data utility by grouping closer data points when compared to other algorithms. 展开更多
关键词 data anonymization privacy-preserving data publishing K-ANONYMITY GENERALIZATION MONDRIAN
下载PDF
A New Anonymity Model for Privacy-Preserving Data Publishing 被引量:5
2
作者 HUANG Xuezhen LIU Jiqiang HAN Zhen YANG Jun 《China Communications》 SCIE CSCD 2014年第9期47-59,共13页
Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta... Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data. 展开更多
关键词 data security privacy protection ANONYMITY data publishing
下载PDF
A privacy-preserving method for publishing data with multiple sensitive attributes
3
作者 Tong Yi Minyong Shi +1 位作者 Wenqian Shang Haibin Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期222-238,共17页
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy requirement.Furthermore,sensitive information disclosure may... The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy requirement.Furthermore,sensitive information disclosure may also be caused by these personalised requirements.To address the matter,this article develops a personalised data publishing method for multiple SAs.According to the requirements of individuals,the new method partitions SAs values into two categories:private values and public values,and breaks the association between them for privacy guarantees.For the private values,this paper takes the process of anonymisation,while the public values are released without this process.An algorithm is designed to achieve the privacy mode,where the selectivity is determined by the sensitive value frequency and undesirable objects.The experimental results show that the proposed method can provide more information utility when compared with previous methods.The theoretic analyses and experiments also indicate that the privacy can be guaranteed even though the public values are known to an adversary.The overgeneralisation and privacy breach caused by the personalised requirement can be avoided by the new method. 展开更多
关键词 data privacy data publishing
下载PDF
Attacks on Anonymization-Based Privacy-Preserving: A Survey for Data Mining and Data Publishing 被引量:1
4
作者 Abou-el-ela Abdou Hussien Nermin Hamza Hesham A. Hefny 《Journal of Information Security》 2013年第2期101-112,共12页
Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with t... Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. 展开更多
关键词 Privacy K-ANONYMITY data MINING privacy-preserving data publishing privacy-preserving data MINING
下载PDF
Slicing-Based Enhanced Method for Privacy-Preserving in Publishing Big Data
5
作者 Mohammed BinJubier Mohd Arfian Ismail +1 位作者 Abdulghani Ali Ahmed Ali Safaa Sadiq 《Computers, Materials & Continua》 SCIE EI 2022年第8期3665-3686,共22页
Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan,conduct,and assess scientific research.However,publishing and pr... Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan,conduct,and assess scientific research.However,publishing and processing big data poses a privacy concern related to protecting individuals’sensitive information while maintaining the usability of the published data.Several anonymization methods,such as slicing and merging,have been designed as solutions to the privacy concerns for publishing big data.However,the major drawback of merging and slicing is the random permutation procedure,which does not always guarantee complete protection against attribute or membership disclosure.Moreover,merging procedures may generatemany fake tuples,leading to a loss of data utility and subsequent erroneous knowledge extraction.This study therefore proposes a slicingbased enhanced method for privacy-preserving big data publishing while maintaining the data utility.In particular,the proposed method distributes the data into horizontal and vertical partitions.The lower and upper protection levels are then used to identify the unique and identical attributes’values.The unique and identical attributes are swapped to ensure the published big data is protected from disclosure risks.The outcome of the experiments demonstrates that the proposed method could maintain data utility and provide stronger privacy preservation. 展开更多
关键词 Big data big data privacy preservation ANONYMIZATION data publishing
下载PDF
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
6
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing privacy-preserving data evaluation IOT blockchain
下载PDF
On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing 被引量:11
7
作者 Lizhi Xiong Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2018年第6期523-539,共17页
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou... Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels. 展开更多
关键词 Cloud data security re-encryption reversible data hiding cloud computing privacy-preserving.
下载PDF
A Retrievable Data Perturbation Method Used in Privacy-Preserving in Cloud Computing 被引量:3
8
作者 YANG Pan 《China Communications》 SCIE CSCD 2014年第8期73-84,共12页
With the increasing popularity of cloud computing,privacy has become one of the key problem in cloud security.When data is outsourced to the cloud,for data owners,they need to ensure the security of their privacy;for ... With the increasing popularity of cloud computing,privacy has become one of the key problem in cloud security.When data is outsourced to the cloud,for data owners,they need to ensure the security of their privacy;for cloud service providers,they need some information of the data to provide high QoS services;and for authorized users,they need to access to the true value of data.The existing privacy-preserving methods can't meet all the needs of the three parties at the same time.To address this issue,we propose a retrievable data perturbation method and use it in the privacy-preserving in data outsourcing in cloud computing.Our scheme comes in four steps.Firstly,an improved random generator is proposed to generate an accurate "noise".Next,a perturbation algorithm is introduced to add noise to the original data.By doing this,the privacy information is hidden,but the mean and covariance of data which the service providers may need remain unchanged.Then,a retrieval algorithm is proposed to get the original data back from the perturbed data.Finally,we combine the retrievable perturbation with the access control process to ensure only the authorized users can retrieve the original data.The experiments show that our scheme perturbs date correctly,efficiently,and securely. 展开更多
关键词 privacy-preserving data perturbation RETRIEVAL access control cloudcomputing
下载PDF
A Survey on the Privacy-Preserving Data Aggregation in Wireless Sensor Networks 被引量:4
9
作者 XU Jian YANG Geng +1 位作者 CHEN Zhengyu WANG Qianqian 《China Communications》 SCIE CSCD 2015年第5期162-180,共19页
Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to s... Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work. 展开更多
关键词 wireless sensor networks data aggregation privacy-preserving
下载PDF
Medical data publishing based on average distribution and clustering 被引量:3
10
作者 Tong Yi Minyong Shi Haibin Zhu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第3期381-394,共14页
Most of the data publishing methods have not considered sensitivity protection,and hence the adversary can disclose privacy by sensitivity attack.Faced with this problem,this paper presents a medical data publishing m... Most of the data publishing methods have not considered sensitivity protection,and hence the adversary can disclose privacy by sensitivity attack.Faced with this problem,this paper presents a medical data publishing method based on sensitivity determination.To protect the sensitivity,the sensitivity of disease information is determined by semantics.To seek the trade-off between information utility and privacy security,the new method focusses on the protection of sensitive values with high sensitivity and assigns the highly sensitive disease information to groups as evenly as possible.The experiments are conducted on two real-world datasets,of which the records include various attributes of patients.To measure sensitivity protection,the authors define a metric,which can evaluate the degree of sensitivity disclosure.Besides,additional information loss and discernability metrics are used to measure the availability of released tables.The experimental results indicate that the new method can provide better privacy than the traditional one while the information utility is guaranteed.Besides value protection,the proposed method can provide sensitivity protection and available releasing for medical data. 展开更多
关键词 data publishing information utility SECURITY SEMANTICS sensitive values sensitivity
下载PDF
A Dynamic Social Network Data Publishing Algorithm Based on Differential Privacy 被引量:2
11
作者 Zhenpeng Liu Yawei Dong +1 位作者 Xuan Zhao Bin Zhang 《Journal of Information Security》 2017年第4期328-338,共11页
Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy inform... Social network contains the interaction between social members, which constitutes the structure and attribute of social network. The interactive relationship of social network contains a lot of personal privacy information. The direct release of social network data will cause the disclosure of privacy information. Aiming at the dynamic characteristics of social network data release, a new dynamic social network data publishing method based on differential privacy was proposed. This method was consistent with differential privacy. It is named DDPA (Dynamic Differential Privacy Algorithm). DDPA algorithm is an improvement of privacy protection algorithm in static social network data publishing. DDPA adds noise which follows Laplace to network edge weights. DDPA identifies the edge weight information that changes as the number of iterations increases, adding the privacy protection budget. Through experiments on real data sets, the results show that the DDPA algorithm satisfies the user’s privacy requirement in social network. DDPA reduces the execution time brought by iterations and reduces the information loss rate of graph structure. 展开更多
关键词 DYNAMIC SOCIAL NETWORK data publishing DIFFERENTIAL PRIVACY
下载PDF
A classification-based privacy-preserving decision-making for secure data sharing in Internet of Things assisted applications 被引量:1
12
作者 Alaa Omran Almagrabi A.K.Bashir 《Digital Communications and Networks》 SCIE CSCD 2022年第4期436-445,共10页
The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a... The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a better quality of user experience regardless of the application type and scenario.However,privacy remains an open issue in this ubiquitous sharing platform due to massive and replicated data availability.In this paper,privacy-preserving decision-making for the data-sharing scheme is introduced.This scheme is responsible for improving the security in data sharing without the impact of replicated resources on communicating users.In this scheme,classification learning is used for identifying replicas and accessing granted resources independently.Based on the trust score of the available resources,this classification is recurrently performed to improve the reliability of information sharing.The user-level decisions for information sharing and access are made using the classification of the resources at the time of availability.This proposed scheme is verified using the metrics access delay,success ratio,computation complexity,and sharing loss. 展开更多
关键词 Classification learning data mining IoT privacy-preserving Resource replication
下载PDF
Achieving privacy-preserving big data aggregation with fault tolerance in smart grid 被引量:1
13
作者 Zhitao Guan Guanlin Si 《Digital Communications and Networks》 SCIE 2017年第4期242-249,共8页
In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching stra... In a smart grid, a huge amount of data is collected for various applications, such as load monitoring and demand response. These data are used for analyzing the power state and formulating the optimal dispatching strategy. However, these big energy data in terms of volume, velocity and variety raise concern over consumers' privacy. For instance, in order to optimize energy utilization and support demand response, numerous smart meters are installed at a consumer's home to collect energy consumption data at a fine granularity, but these fine-grained data may contain information on the appliances and thus the consumer's behaviors at home. In this paper, we propose a privacy-preserving data aggregation scheme based on secret sharing with fault tolerance in a smart grid, which ensures that the control center obtains the integrated data without compromising privacy. Meanwhile, we also consider fault tolerance and resistance to differential attack during the data aggregation. Finally, we perform a security analysis and performance evaluation of our scheme in comparison with the other similar schemes. The analysis shows that our scheme can meet the security requirement, and it also shows better performance than other popular methods. 展开更多
关键词 Big data Smart grid privacy-preserving Fault tolerance
下载PDF
A Differential Privacy Based (k-Ψ)-Anonymity Method for Trajectory Data Publishing 被引量:1
14
作者 Hongyu Chen Shuyu Li Zhaosheng Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第12期2665-2685,共21页
In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajecto... In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy. 展开更多
关键词 Trajectory data publishing privacy preservation road network (k-Ψ)-anonymity differential privacy
下载PDF
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography 被引量:1
15
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 privacy-preserving crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Privacy-preserving deep learning techniques for wearable sensor-based big data applications 被引量:1
16
作者 Rafik HAMZA Minh-Son DAO 《Virtual Reality & Intelligent Hardware》 2022年第3期210-222,共13页
Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable ... Wearable technologies have the potential to become a valuable influence on human daily life where they may enable observing the world in new ways,including,for example,using augmented reality(AR)applications.Wearable technology uses electronic devices that may be carried as accessories,clothes,or even embedded in the user's body.Although the potential benefits of smart wearables are numerous,their extensive and continual usage creates several privacy concerns and tricky information security challenges.In this paper,we present a comprehensive survey of recent privacy-preserving big data analytics applications based on wearable sensors.We highlight the fundamental features of security and privacy for wearable device applications.Then,we examine the utilization of deep learning algorithms with cryptography and determine their usability for wearable sensors.We also present a case study on privacy-preserving machine learning techniques.Herein,we theoretically and empirically evaluate the privacy-preserving deep learning framework's performance.We explain the implementation details of a case study of a secure prediction service using the convolutional neural network(CNN)model and the Cheon-Kim-Kim-Song(CHKS)homomorphic encryption algorithm.Finally,we explore the obstacles and gaps in the deployment of practical real-world applications.Following a comprehensive overview,we identify the most important obstacles that must be overcome and discuss some interesting future research directions. 展开更多
关键词 Wearable technology Augmented reality privacy-preserving Deep learning Big data Secure prediction service
下载PDF
Design of Experimental Data Publishing Software for Neutral Beam Injector on EAST
17
作者 张睿 胡纯栋 +3 位作者 盛鹏 赵远哲 张晓丹 吴德云 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第2期173-176,共4页
Neutral Beam Injection (NBI) is one of the most effective means for plasma heating. Experimental Data Publishing Software (EDPS) is developed to publish experimental data to get the NBI system under remote monitor... Neutral Beam Injection (NBI) is one of the most effective means for plasma heating. Experimental Data Publishing Software (EDPS) is developed to publish experimental data to get the NBI system under remote monitoring. In this paper, the architecture and implementation of EDPS including the design of the communication module and web page display module are presented. EDPS is developed based on the Browser/Server (B/S) model, and works under the Linux operating system. Using the data source and communication mechanism of the NBI Control System (NBICS), EDPS publishes experimental data on the Internet. 展开更多
关键词 NBI B/S experimental data configuration publishing APPLET JFREECHART SERVLET
下载PDF
PVF-DA: Privacy-Preserving, Verifiable and FaultTolerant Data Aggregation in MEC
18
作者 Jianhong Zhang Qijia Zhang +1 位作者 Shenglong Ji Wenle Bai 《China Communications》 SCIE CSCD 2020年第8期58-69,共12页
As an emergent-architecture, mobile edge computing shifts cloud service to the edge of networks. It can satisfy several desirable characteristics for Io T systems. To reduce communication pressure from Io T devices, d... As an emergent-architecture, mobile edge computing shifts cloud service to the edge of networks. It can satisfy several desirable characteristics for Io T systems. To reduce communication pressure from Io T devices, data aggregation is a good candidate. However, data processing in MEC may suffer from many challenges, such as unverifiability of aggregated data, privacy-violation and fault-tolerance. To address these challenges, we propose PVF-DA: privacy-preserving, verifiable and fault-tolerant data aggregation in MEC based on aggregator-oblivious encryption and zero-knowledge-proof. The proposed scheme can not only provide privacy protection of the reported data, but also resist the collusion between MEC server and corrupted Io T devices. Furthermore, the proposed scheme has two outstanding features: verifiability and strong fault-tolerance. Verifiability can make Io T device to verify whether the reported sensing data is correctly aggregated. Strong fault-tolerance makes the aggregator to compute an aggregate even if one or several Io Ts fail to report their data. Finally, the detailed security proofs are shown that the proposed scheme can achieve security and privacy-preservation properties in MEC. 展开更多
关键词 MEC data aggregation verifiability privacy-preserving FAULT-TOLERANCE
下载PDF
Privacy-Preserving Deep Learning on Big Data in Cloud
19
作者 Yongkai Fan Wanyu Zhang +2 位作者 Jianrong Bai Xia Lei Kuanching Li 《China Communications》 SCIE CSCD 2023年第11期176-186,共11页
In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a ... In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency. 展开更多
关键词 big data cloud computing deep learning homomorphic encryption privacy-preserving
下载PDF
Attacks and Countermeasures in Social Network Data Publishing
20
作者 YANG Mengmeng ZHU Tianqing +1 位作者 ZHOU Wanlei XIANG Yang 《ZTE Communications》 2016年第B06期2-9,共8页
With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For exa... With the increasing prevalence of social networks, more and more social network data are published for many applications, such as social network analysis and data mining. However, this brings privacy problems. For example, adversaries can get sensitive information of some individuals easily with little background knowledge. How to publish social network data for analysis purpose while preserving the privacy of individuals has raised many concerns. Many algorithms have been proposed to address this issue. In this paper, we discuss this privacy problem from two aspects: attack models and countermeasures. We analyse privacy conceres, model the background knowledge that adversary may utilize and review the recently developed attack models. We then survey the state-of-the-art privacy preserving methods in two categories: anonymization methods and differential privacy methods. We also provide research directions in this area. 展开更多
关键词 social network data publishing attack model privacy preserving
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部