期刊文献+
共找到36,483篇文章
< 1 2 250 >
每页显示 20 50 100
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles 被引量:1
1
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain privacy-preservation Homomorphic encryption Internetof vehicles
下载PDF
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
2
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing privacy-preserving data evaluation IOT blockchain
下载PDF
A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions
3
作者 Shahriar Md Arman Tao Yang +3 位作者 Shahadat Shahed Alanoud AlMazroa Afraa Attiah Linda Mohaisen 《Computers, Materials & Continua》 SCIE EI 2024年第2期2087-2110,共24页
The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advant... The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advantages over traditional methods,making it crucial to safeguard the privacy of people’s biometric data in various scenarios.This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems.It proposes a noble and thorough taxonomy survey for privacy-preserving techniques,as well as a systematic framework for categorizing the field’s existing literature.We review the state-of-the-art methods and address their advantages and limitations in the context of various biometric modalities,such as face,fingerprint,and eye detection.The survey encompasses various categories of privacy-preserving mechanisms and examines the trade-offs between security,privacy,and recognition performance,as well as the issues and future research directions.It aims to provide researchers,professionals,and decision-makers with a thorough understanding of the existing privacy-preserving solutions in biometric recognition systems and serves as the foundation of the development of more secure and privacy-preserving biometric technologies. 展开更多
关键词 Biometric modalities biometric recognition biometric security privacy-preserving security threats
下载PDF
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
4
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 privacy-preserving intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
Privacy-Preserving Multi-Keyword Fuzzy Adjacency Search Strategy for Encrypted Graph in Cloud Environment
5
作者 Bin Wu Xianyi Chen +5 位作者 Jinzhou Huang Caicai Zhang Jing Wang Jing Yu Zhiqiang Zhao Zhuolin Mei 《Computers, Materials & Continua》 SCIE EI 2024年第3期3177-3194,共18页
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on... In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology. 展开更多
关键词 privacy-preserving adjacency query multi-keyword fuzzy search encrypted graph
下载PDF
VPFL:A verifiable privacy-preserving federated learning scheme for edge computing systems 被引量:2
6
作者 Jiale Zhang Yue Liu +3 位作者 Di Wu Shuai Lou Bing Chen Shui Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期981-989,共9页
Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the centra... Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy. 展开更多
关键词 Federated learning Edge computing privacy-preserving Verifiable aggregation Homomorphic cryptosystem
下载PDF
Blockchain-Enabled Secure and Privacy-Preserving Data Aggregation for Fog-Based ITS 被引量:1
7
作者 Siguang Chen Li Yang +1 位作者 Yanhang Shi Qian Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期3781-3796,共16页
As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to b... As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to balance the power supply and generate profits.However,when the system collects the corresponding power data,several severe security and privacy issues are encountered.The identity and private injection data may be maliciously intercepted by network attackers and be tampered with to damage the services of ITS and smart grids.Existing approaches requiring high computational overhead render them unsuitable for the resource-constrained Internet of Things(IoT)environment.To address above problems,this paper proposes a blockchain-enabled secure and privacy-preserving data aggregation scheme for fog-based ITS.First,a fog computing and blockchain co-aware aggregation framework of power injection data is designed,which provides strong support for ITS to achieve secure and efficient power injection.Second,Paillier homomorphic encryption,the batch aggregation signature mechanism and a Bloom filter are effectively integrated with efficient aggregation of power injection data with security and privacy guarantees.In addition,the fine-grained homomorphic aggregation is designed for power injection data generated by all EVs,which provides solid data support for accurate power dispatching and supply management in ITS.Experiments show that the total computational cost is significantly reduced in the proposed scheme while providing security and privacy guarantees.The proposed scheme is more suitable for ITS with latency-sensitive applications and is also adapted to deploying devices with limited resources. 展开更多
关键词 Blockchain fog computing security privacy-preserving ITS
下载PDF
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography 被引量:1
8
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 privacy-preserving crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
9
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Parallel Light Fields: A Perspective and A Framework 被引量:1
10
作者 Fei-Yue Wang Yu Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期542-544,共3页
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simpl... Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simplified expression of light fields with depth information discarded. In theory, computer vision tasks may achieve better performance as long as complete light fields are acquired. 展开更多
关键词 COMPUTER framework simplified
下载PDF
Privacy-Preserving Deep Learning on Big Data in Cloud
11
作者 Yongkai Fan Wanyu Zhang +2 位作者 Jianrong Bai Xia Lei Kuanching Li 《China Communications》 SCIE CSCD 2023年第11期176-186,共11页
In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a ... In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency. 展开更多
关键词 big data cloud computing deep learning homomorphic encryption privacy-preserving
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:2
12
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
OTFS-Based Efficient Handover Authentication Scheme with Privacy-Preserving for High Mobility Scenarios
13
作者 Dawei Li Di Liu +1 位作者 Yu Sun Jianwei Liu 《China Communications》 SCIE CSCD 2023年第1期36-49,共14页
Handover authentication in high mobility scenarios is characterized by frequent and shortterm parallel execution.Moreover,the penetration loss and Doppler frequency shift caused by high speed also lead to the deterior... Handover authentication in high mobility scenarios is characterized by frequent and shortterm parallel execution.Moreover,the penetration loss and Doppler frequency shift caused by high speed also lead to the deterioration of network link quality.Therefore,high mobility scenarios require handover schemes with less handover overhead.However,some existing schemes that meet this requirement cannot provide strong security guarantees,while some schemes that can provide strong security guarantees have large handover overheads.To solve this dilemma,we propose a privacy-preserving handover authentication scheme that can provide strong security guarantees with less computational cost.Based on Orthogonal Time Frequency Space(OTFS)link and Key Encapsulation Mechanism(KEM),we establish the shared key between protocol entities in the initial authentication phase,thereby reducing the overhead in the handover phase.Our proposed scheme can achieve mutual authentication and key agreement among the user equipment,relay node,and authentication server.We demonstrate that our proposed scheme can achieve user anonymity,unlinkability,perfect forward secrecy,and resistance to various attacks through security analysis including the Tamarin.The performance evaluation results show that our scheme has a small computational cost compared with other schemes and can also provide a strong guarantee of security properties. 展开更多
关键词 high mobility condition handover authentication privacy-preserving TAMARIN OTFS
下载PDF
A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques
14
作者 Burak Cem Kara Can Eyüpoglu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1515-1535,共21页
Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off betw... Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area.When existing approaches are investigated,one of the most significant difficulties discovered is the presence of outlier data in the datasets.Outlier data has a negative impact on data utility.Furthermore,k-anonymity algorithms,which are commonly used in the literature,do not provide adequate protection against outlier data.In this study,a new data anonymization algorithm is devised and tested for boosting data utility by incorporating an outlier data detection mechanism into the Mondrian algorithm.The connectivity-based outlier factor(COF)algorithm is used to detect outliers.Mondrian is selected because of its capacity to anonymize multidimensional data while meeting the needs of real-world data.COF,on the other hand,is used to discover outliers in high-dimensional datasets with complicated structures.The proposed algorithm generates more equivalence classes than the Mondrian algorithm and provides greater data utility than previous algorithms based on k-anonymization.In addition,it outperforms other algorithms in the discernibility metric(DM),normalized average equivalence class size(Cavg),global certainty penalty(GCP),query error rate,classification accuracy(CA),and F-measure metrics.Moreover,the increase in the values of theGCPand error ratemetrics demonstrates that the proposed algorithm facilitates obtaining higher data utility by grouping closer data points when compared to other algorithms. 展开更多
关键词 Data anonymization privacy-preserving data publishing K-ANONYMITY GENERALIZATION MONDRIAN
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:2
15
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption
16
作者 Chen Wang Jian Xu +2 位作者 Jiarun Li Yan Dong Nitin Naik 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1421-1436,共16页
Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new sys... Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption(kNNCM-MKHE).We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan(BGV)for collaborative evaluation of the kNN classifier provided by multiple model owners.Analyze the operations of kNN and extract basic operations,such as addition,multiplication,and comparison.It supports the computation of encrypted data with different public keys.At the same time,we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data.In the evaluation process,each model owner encrypts the model and uploads the encrypted models to the evaluator.After receiving encrypted the kNN classifier and the user’s inputs,the evaluator calculated the aggregated results.The evaluator will perform a secure computing protocol to aggregate the number of each class label.Then,it sends the class labels with their associated counts to the user.Each model owner and user encrypt the result together.No information will be disclosed to the evaluator.The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier. 展开更多
关键词 Outsourced privacy-preserving multi-key HE machine learning KNN
下载PDF
Managing the surge:A comprehensive review of the entire disposal framework for retired lithium-ion batteries from electric vehicles 被引量:1
17
作者 Ruohan Guo Feng Wang +2 位作者 M.Akbar Rhamdhani Yiming Xu Weixiang Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期648-680,共33页
Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offe... Anticipating the imminent surge of retired lithium-ion batteries(R-LIBs)from electric vehicles,the need for safe,cost-effective and environmentally friendly disposal technologies has escalated.This paper seeks to offer a comprehensive overview of the entire disposal framework for R-LIBs,encompassing a broad spectrum of activities,including screening,repurposing and recycling.Firstly,we delve deeply into a thorough examination of current screening technologies,shifting the focus from a mere enumeration of screening methods to the exploration of the strategies for enhancing screening efficiency.Secondly,we outline battery repurposing with associated key factors,summarizing stationary applications and sizing methods for R-LIBs in their second life.A particular light is shed on available reconditioning solutions,demonstrating their great potential in facilitating battery safety and lifetime in repurposing scenarios and identifying their techno-economic issues.In the realm of battery recycling,we present an extensive survey of pre-treatment options and subsequent material recovery technologies.Particularly,we introduce several global leading recyclers to illustrate their industrial processes and technical intricacies.Furthermore,relevant challenges and evolving trends are investigated in pursuit of a sustainable end-of-life management and disposal framework.We hope that this study can serve as a valuable resource for researchers,industry professionals and policymakers in this field,ultimately facilitating the adoption of proper disposal practices. 展开更多
关键词 Lithium-ion battery Battery reproposing and recycling Miaieiials recovery technologies Techno-economic issues End-of-life management Disposal framework
下载PDF
Covalent Organic Framework with 3D Ordered Channel and Multi-Functional Groups Endows Zn Anode with Superior Stability 被引量:1
18
作者 Bin Li Pengchao Ruan +9 位作者 Xieyu Xu Zhangxing He Xinyan Zhu Liang Pan Ziyu Peng Yangyang Liu Peng Zhou Bingan Lu Lei Dai Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期350-363,共14页
Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable gr... Achieving a highly robust zinc(Zn)metal anode is extremely important for improving the performance of aqueous Zn-ion batteries(AZIBs)for advancing“carbon neutrality”society,which is hampered by the uncontrollable growth of Zn dendrite and severe side reactions including hydrogen evolution reaction,corrosion,and passivation,etc.Herein,an interlayer containing fluorinated zincophilic covalent organic framework with sulfonic acid groups(COF-S-F)is developed on Zn metal(Zn@COF-S-F)as the artificial solid electrolyte interface(SEI).Sulfonic acid group(-SO_(3)H)in COF-S-F can effectively ameliorate the desolvation process of hydrated Zn ions,and the three-dimensional channel with fluoride group(-F)can provide interconnected channels for the favorable transport of Zn ions with ion-confinement effects,endowing Zn@COF-S-F with dendrite-free morphology and suppressed side reactions.Consequently,Zn@COF-S-F symmetric cell can stably cycle for 1,000 h with low average hysteresis voltage(50.5 m V)at the current density of 1.5 m A cm^(-2).Zn@COF-S-F|Mn O_(2)cell delivers the discharge specific capacity of 206.8 m Ah g^(-1)at the current density of 1.2 A g^(-1)after 800 cycles with high-capacity retention(87.9%).Enlightening,building artificial SEI on metallic Zn surface with targeted design has been proved as the effective strategy to foster the practical application of high-performance AZIBs. 展开更多
关键词 Aqueous Zn ion batteries Covalent organic framework Interfacial modification Zn ion flux regulation Desolvation effect
下载PDF
Systematic Security Guideline Framework through Intelligently Automated Vulnerability Analysis
19
作者 Dahyeon Kim Namgi Kim Junho Ahn 《Computers, Materials & Continua》 SCIE EI 2024年第3期3867-3889,共23页
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof... This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules. 展开更多
关键词 framework AUTOMATION vulnerability analysis SECURITY GUIDELINES
下载PDF
Metal–Organic Framework‑Based Photodetectors
20
作者 Jin‑Biao Zhang Yi‑Bo Tian +1 位作者 Zhi‑Gang Gu Jian Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期675-703,共29页
The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we sum... The unique and interesting physical and chemical properties of metal–organic framework(MOF)materials have recently attracted extensive attention in a new generation of photoelectric applications.In this review,we summarized and discussed the research progress on MOF-based photodetectors.The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details.Additionally,the photodetectors applications for X-ray,ultraviolet and infrared light,biological detectors,and circularly polarized light photodetectors are discussed.Furthermore,summaries and challenges are provided for this important research field. 展开更多
关键词 Metal-organic frameworks SEMICONDUCTOR PHOTODETECTORS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部