期刊文献+
共找到35,904篇文章
< 1 2 250 >
每页显示 20 50 100
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
1
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain privacy-preservation Homomorphic encryption Internetof vehicles
下载PDF
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
2
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing privacy-preserving data evaluation IOT blockchain
下载PDF
A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions
3
作者 Shahriar Md Arman Tao Yang +3 位作者 Shahadat Shahed Alanoud AlMazroa Afraa Attiah Linda Mohaisen 《Computers, Materials & Continua》 SCIE EI 2024年第2期2087-2110,共24页
The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advant... The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advantages over traditional methods,making it crucial to safeguard the privacy of people’s biometric data in various scenarios.This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems.It proposes a noble and thorough taxonomy survey for privacy-preserving techniques,as well as a systematic framework for categorizing the field’s existing literature.We review the state-of-the-art methods and address their advantages and limitations in the context of various biometric modalities,such as face,fingerprint,and eye detection.The survey encompasses various categories of privacy-preserving mechanisms and examines the trade-offs between security,privacy,and recognition performance,as well as the issues and future research directions.It aims to provide researchers,professionals,and decision-makers with a thorough understanding of the existing privacy-preserving solutions in biometric recognition systems and serves as the foundation of the development of more secure and privacy-preserving biometric technologies. 展开更多
关键词 Biometric modalities biometric recognition biometric security privacy-preserving security threats
下载PDF
Privacy-Preserving Multi-Keyword Fuzzy Adjacency Search Strategy for Encrypted Graph in Cloud Environment
4
作者 Bin Wu Xianyi Chen +5 位作者 Jinzhou Huang Caicai Zhang Jing Wang Jing Yu Zhiqiang Zhao Zhuolin Mei 《Computers, Materials & Continua》 SCIE EI 2024年第3期3177-3194,共18页
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on... In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so on.Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers.Servers on cloud platforms usually have some subjective or objective attacks,which make the outsourced graph data in an insecure state.The issue of privacy data protection has become an important obstacle to data sharing and usage.How to query outsourcing graph data safely and effectively has become the focus of research.Adjacency query is a basic and frequently used operation in graph,and it will effectively promote the query range and query ability if multi-keyword fuzzy search can be supported at the same time.This work proposes to protect the privacy information of outsourcing graph data by encryption,mainly studies the problem of multi-keyword fuzzy adjacency query,and puts forward a solution.In our scheme,we use the Bloom filter and encryption mechanism to build a secure index and query token,and adjacency queries are implemented through indexes and query tokens on the cloud server.Our proposed scheme is proved by formal analysis,and the performance and effectiveness of the scheme are illustrated by experimental analysis.The research results of this work will provide solid theoretical and technical support for the further popularization and application of encrypted graph data processing technology. 展开更多
关键词 privacy-preserving adjacency query multi-keyword fuzzy search encrypted graph
下载PDF
VPFL:A verifiable privacy-preserving federated learning scheme for edge computing systems 被引量:2
5
作者 Jiale Zhang Yue Liu +3 位作者 Di Wu Shuai Lou Bing Chen Shui Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期981-989,共9页
Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the centra... Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy. 展开更多
关键词 Federated learning Edge computing privacy-preserving Verifiable aggregation Homomorphic cryptosystem
下载PDF
Blockchain-Enabled Secure and Privacy-Preserving Data Aggregation for Fog-Based ITS
6
作者 Siguang Chen Li Yang +1 位作者 Yanhang Shi Qian Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期3781-3796,共16页
As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to b... As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to balance the power supply and generate profits.However,when the system collects the corresponding power data,several severe security and privacy issues are encountered.The identity and private injection data may be maliciously intercepted by network attackers and be tampered with to damage the services of ITS and smart grids.Existing approaches requiring high computational overhead render them unsuitable for the resource-constrained Internet of Things(IoT)environment.To address above problems,this paper proposes a blockchain-enabled secure and privacy-preserving data aggregation scheme for fog-based ITS.First,a fog computing and blockchain co-aware aggregation framework of power injection data is designed,which provides strong support for ITS to achieve secure and efficient power injection.Second,Paillier homomorphic encryption,the batch aggregation signature mechanism and a Bloom filter are effectively integrated with efficient aggregation of power injection data with security and privacy guarantees.In addition,the fine-grained homomorphic aggregation is designed for power injection data generated by all EVs,which provides solid data support for accurate power dispatching and supply management in ITS.Experiments show that the total computational cost is significantly reduced in the proposed scheme while providing security and privacy guarantees.The proposed scheme is more suitable for ITS with latency-sensitive applications and is also adapted to deploying devices with limited resources. 展开更多
关键词 Blockchain fog computing security privacy-preserving ITS
下载PDF
Privacy-Preserving Deep Learning on Big Data in Cloud
7
作者 Yongkai Fan Wanyu Zhang +2 位作者 Jianrong Bai Xia Lei Kuanching Li 《China Communications》 SCIE CSCD 2023年第11期176-186,共11页
In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a ... In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency. 展开更多
关键词 big data cloud computing deep learning homomorphic encryption privacy-preserving
下载PDF
OTFS-Based Efficient Handover Authentication Scheme with Privacy-Preserving for High Mobility Scenarios
8
作者 Dawei Li Di Liu +1 位作者 Yu Sun Jianwei Liu 《China Communications》 SCIE CSCD 2023年第1期36-49,共14页
Handover authentication in high mobility scenarios is characterized by frequent and shortterm parallel execution.Moreover,the penetration loss and Doppler frequency shift caused by high speed also lead to the deterior... Handover authentication in high mobility scenarios is characterized by frequent and shortterm parallel execution.Moreover,the penetration loss and Doppler frequency shift caused by high speed also lead to the deterioration of network link quality.Therefore,high mobility scenarios require handover schemes with less handover overhead.However,some existing schemes that meet this requirement cannot provide strong security guarantees,while some schemes that can provide strong security guarantees have large handover overheads.To solve this dilemma,we propose a privacy-preserving handover authentication scheme that can provide strong security guarantees with less computational cost.Based on Orthogonal Time Frequency Space(OTFS)link and Key Encapsulation Mechanism(KEM),we establish the shared key between protocol entities in the initial authentication phase,thereby reducing the overhead in the handover phase.Our proposed scheme can achieve mutual authentication and key agreement among the user equipment,relay node,and authentication server.We demonstrate that our proposed scheme can achieve user anonymity,unlinkability,perfect forward secrecy,and resistance to various attacks through security analysis including the Tamarin.The performance evaluation results show that our scheme has a small computational cost compared with other schemes and can also provide a strong guarantee of security properties. 展开更多
关键词 high mobility condition handover authentication privacy-preserving TAMARIN OTFS
下载PDF
A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques
9
作者 Burak Cem Kara Can Eyüpoglu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1515-1535,共21页
Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off betw... Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area.When existing approaches are investigated,one of the most significant difficulties discovered is the presence of outlier data in the datasets.Outlier data has a negative impact on data utility.Furthermore,k-anonymity algorithms,which are commonly used in the literature,do not provide adequate protection against outlier data.In this study,a new data anonymization algorithm is devised and tested for boosting data utility by incorporating an outlier data detection mechanism into the Mondrian algorithm.The connectivity-based outlier factor(COF)algorithm is used to detect outliers.Mondrian is selected because of its capacity to anonymize multidimensional data while meeting the needs of real-world data.COF,on the other hand,is used to discover outliers in high-dimensional datasets with complicated structures.The proposed algorithm generates more equivalence classes than the Mondrian algorithm and provides greater data utility than previous algorithms based on k-anonymization.In addition,it outperforms other algorithms in the discernibility metric(DM),normalized average equivalence class size(Cavg),global certainty penalty(GCP),query error rate,classification accuracy(CA),and F-measure metrics.Moreover,the increase in the values of theGCPand error ratemetrics demonstrates that the proposed algorithm facilitates obtaining higher data utility by grouping closer data points when compared to other algorithms. 展开更多
关键词 Data anonymization privacy-preserving data publishing K-ANONYMITY GENERALIZATION MONDRIAN
下载PDF
Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption
10
作者 Chen Wang Jian Xu +2 位作者 Jiarun Li Yan Dong Nitin Naik 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1421-1436,共16页
Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new sys... Outsourcing the k-Nearest Neighbor(kNN)classifier to the cloud is useful,yet it will lead to serious privacy leakage due to sensitive outsourced data and models.In this paper,we design,implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption(kNNCM-MKHE).We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan(BGV)for collaborative evaluation of the kNN classifier provided by multiple model owners.Analyze the operations of kNN and extract basic operations,such as addition,multiplication,and comparison.It supports the computation of encrypted data with different public keys.At the same time,we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data.In the evaluation process,each model owner encrypts the model and uploads the encrypted models to the evaluator.After receiving encrypted the kNN classifier and the user’s inputs,the evaluator calculated the aggregated results.The evaluator will perform a secure computing protocol to aggregate the number of each class label.Then,it sends the class labels with their associated counts to the user.Each model owner and user encrypt the result together.No information will be disclosed to the evaluator.The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier. 展开更多
关键词 Outsourced privacy-preserving multi-key HE machine learning KNN
下载PDF
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography
11
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 privacy-preserving crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework
12
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Parallel Light Fields: A Perspective and A Framework
13
作者 Fei-Yue Wang Yu Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期542-544,共3页
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simpl... Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simplified expression of light fields with depth information discarded. In theory, computer vision tasks may achieve better performance as long as complete light fields are acquired. 展开更多
关键词 COMPUTER framework simplified
下载PDF
Systematic Security Guideline Framework through Intelligently Automated Vulnerability Analysis
14
作者 Dahyeon Kim Namgi Kim Junho Ahn 《Computers, Materials & Continua》 SCIE EI 2024年第3期3867-3889,共23页
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof... This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules. 展开更多
关键词 framework AUTOMATION vulnerability analysis SECURITY GUIDELINES
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
15
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 Metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
16
作者 Yue Cao Ru Wu +2 位作者 Yan‑Yan Gao Yang Zhou Jun‑Jie Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期395-422,共28页
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic... Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. 展开更多
关键词 Covalent organic frameworks ELECTROCHEMISTRY ELECTROCHEMILUMINESCENCE SENSORS
下载PDF
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
17
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 Metal-organic frameworks MXene NANOCELLULOSE Electromagnetic shielding Photothermal conversion
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
18
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Earth vitality:An integrated framework for tracking Earth sustainability
19
作者 Chuanglin Fang Zhitao Liu 《Geography and Sustainability》 CSCD 2024年第1期96-107,共12页
The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly... The Anthropocene era is characterized by the escalating impact of human activities on the environment,as well as the increasingly complex interactions among various components of the Earth system.These factors greatly affect the Earth's evolutionary trajectory.Despite notable strides in sustainable development practices worldwide,it remains unclear to what extent we have achieved Earth sustainability.Consequently,there is a pressing need to enhance conceptual and methodological frameworks to measure sustainability progress accurately.To address this need,we developed an Earth Vitality Framework that aids in tracking the Earth sustainability progress by considering interactions between spheres,recognizing the equal relationship between humans and nature,and presenting a threshold scheme for all measures.We applied this framework at global and national scales to demonstrate its usefulness.Our findings reveal that the current Earth Vitality Index is 63.74,indicating that the Earth is in a"weak"vitality.Irrational social institutions,unsatisfactory life experiences and the poor state of the biosphere and hydrosphere have remarkably affected the Earth vitality.Additionally,inequality exists between high-income and low-income countries.Although most of the former exhibit poor human-nature interaction,all of them enjoy good human well-being,while the opposite is true for the latter.Finally,we summarize the challenges and possible options for enhancing the Earth vitality in terms of coping with spillover effects,tipping cascades,feedback,and heterogeneity. 展开更多
关键词 Multi-sphere Human-nature interaction SUSTAINABILITY Earth vitality framework
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review
20
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 Porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部