In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with...In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.展开更多
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
The power communication network is a separate network from the power grid whose primary purpose is to ensure the power grid's safe operation.This paper expounds the composition of the comprehensive network managem...The power communication network is a separate network from the power grid whose primary purpose is to ensure the power grid's safe operation.This paper expounds the composition of the comprehensive network management architecture of the power communication data network and the implementation of the data acquisition module in the network management system through theoretical analysis,for the reference of relevant personnel,in order to better promote the collection of power grid communication network data.展开更多
This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric po...This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric power communication network. It presents a new Communication System-IDS-2000 integrated digital communication system. The paper introduces the characteristics and application of IDS-2000 system in the local electric power communication network.展开更多
Network information communication technology in power systems is the key to ensuring the safe and efficient operation of power grids.The network information communication technology itself has advantages in automation...Network information communication technology in power systems is the key to ensuring the safe and efficient operation of power grids.The network information communication technology itself has advantages in automation operation and information transmission,thus is widely applied to the power system.In the case of ensuring that the power system is compatible with the network information communication technology,the control of the power system can be strengthened,and the operational efficiency of the power system can be improved.This paper mainly analyzes the specific application of network information communication technology in power system.展开更多
This paper proposes a novel optimization scheme to support stable and reliable vehicle-to-everything connections in two-tier networks,where the uplink channel of the cellular user is reused by underlay vehicle-to-vehi...This paper proposes a novel optimization scheme to support stable and reliable vehicle-to-everything connections in two-tier networks,where the uplink channel of the cellular user is reused by underlay vehicle-to-vehicle communications.However,considering complex channel fading and high-speed vehicle movement,the cer-tainty assumption is impractical and fails to maintain power control strategy in reality in the traditional statical vehicular networks.Rather than the perfect channel state information assumption,the first-order Gauss-Markov process which is a probabilistic model affected by vehicle speed and fading is introduced to describe imperfect channel gains.Moreover,interference management is a major challenge in reusing communications,especially in uncertain channel environments.Power control is an effective way to realize interference management,and optimal power allocation can ensure that interference of the user meets the communication requirements.In this study,the sum-rate-oriented power control scheme and minimum-rate-oriented power control scheme were implemented to manage interference and satisfy different design objectives.Since both of these schemes are non-convex and intractable,the Bernstein approximation and successive convex approximation methods were adopted to transform the original problems into convex ones.Furthermore,a novel distributed robust power control al-gorithm was developed to determine the optimal solutions.The performance of the algorithm was evaluated through numerical simulations,and the results indicate that the proposed algorithm is effective in vehicular communication networks with uncertain channel environments.展开更多
Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information w...Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristi...When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensu...This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.展开更多
In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The...In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.展开更多
The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and te...The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and terrestrial base stations(TBSs)deployed along the coast,and proved that data rate could be improved by optimizing transmit power and ABS’s position.In practice,users on a vessel can be collaboratively served by an ABS and a vesselenabled base station(VBS)in different networks.In this case,how to select the network for users on a vessel is still an open issue.In this paper,a TBS and a satellite respectively provide wireless backhaul for the ABS and the VBS.The network selection is jointly optimized with transmit power of ABS and VBS,and ABS’s position for improving data rate of all users.We solve it by finding candidates for network selection and iteratively solving transmit power and ABS’s position for each candidate.Simulation results demonstrate that data rate can be improved by collaborative coverage for users on a vessel.展开更多
Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via vario...Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.展开更多
The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a m...The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a mathematical framework to evaluate the trade-offs of Fog proposal. Specifically, testing the power consumption, delay and energy efficiency in comparison with traditional cloud radio access networks. Although the literature has showed that fog radio access networks provides an enhanced delay performance, this paper shows that an enlarged amount of power is consumed, which degrades the energy efficiency in comparison with traditional cloud counterpart. However, the level of such devolution depends on the number of deployed fog devices that directly influences the power consumption. This paper also shows that enhancing the delay by using fog architecture is not a straight forward process, but requires a particular caring in terms of choosing the appropriate mode while placing/installing fog functions within fog devices.展开更多
Optimal resource allocation is critical to the efficiency of cooperative communiCations. In this paper, we develop an auction-based power allocation mechanism for network-coded cooperation in wireless networks, in whi...Optimal resource allocation is critical to the efficiency of cooperative communiCations. In this paper, we develop an auction-based power allocation mechanism for network-coded cooperation in wireless networks, in which the sources compete for the relay power for maximum utility, while the relay node assigns the resource in accordance with the bids from the sources. Moreover, to improve the resource utilization, the relay node is allowed to perform network coding across the received information for the same destination. Finally, numerical results validate the performance of the proposed algorithm, and show that there exists a tradeoff between the system outage probability and the power consumed at the relay node.展开更多
A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocati...A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocation matrices at the relays, it is shown that the overall MAMR network is simplified to M independent single antenna multiple relay (SAMR) networks, where M is the number of source and destination antennas. This enables to incorporate network beamforming proposed for SAMR networks. Accordingly, using the BER as the performance metric, we present simulation results to show the proposed approach outperforms the common ZF method addressed in the literature.展开更多
At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the kn...At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).展开更多
Integrating the power grid technology with renewable power generation technologies, Demand Response (DR) programs enabled by the Advanced Metering Infrastructure (AMI) were introduced into the power grid in the intere...Integrating the power grid technology with renewable power generation technologies, Demand Response (DR) programs enabled by the Advanced Metering Infrastructure (AMI) were introduced into the power grid in the interest of both utilities and residents. They help to achieve load balance and increase the grid reliability by encouraging residents to reduce their power usage during peak load periods in return for incentives. To automate this process, appliances, in-house sensors, and the AMI controller need to be networked together. In this paper, we compare mainstream network technologies applicable to home appliance control and propose a solution combining Power Line Communication (PLC) with wireless communication in smart homes for the purpose of energy saving. We extended NS-2, a popular network simulator, to model such combined network scenarios. Using a number of different routing strategies, we then model and evaluate the network performance of DR programs in smart homes in such a combined network.展开更多
In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network n...In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.展开更多
基金supported by the Natural Science Foundation of Beijing Municipality under Grant L192034。
文摘In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems.
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
文摘The power communication network is a separate network from the power grid whose primary purpose is to ensure the power grid's safe operation.This paper expounds the composition of the comprehensive network management architecture of the power communication data network and the implementation of the data acquisition module in the network management system through theoretical analysis,for the reference of relevant personnel,in order to better promote the collection of power grid communication network data.
文摘This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric power communication network. It presents a new Communication System-IDS-2000 integrated digital communication system. The paper introduces the characteristics and application of IDS-2000 system in the local electric power communication network.
文摘Network information communication technology in power systems is the key to ensuring the safe and efficient operation of power grids.The network information communication technology itself has advantages in automation operation and information transmission,thus is widely applied to the power system.In the case of ensuring that the power system is compatible with the network information communication technology,the control of the power system can be strengthened,and the operational efficiency of the power system can be improved.This paper mainly analyzes the specific application of network information communication technology in power system.
基金supported by National Natural Science Foundation of China under grant 61873223,61803328the Natural Science Foundation of Hebei Province under grant F2019203095Beijing Natural Science Foundation under grant L201002.
文摘This paper proposes a novel optimization scheme to support stable and reliable vehicle-to-everything connections in two-tier networks,where the uplink channel of the cellular user is reused by underlay vehicle-to-vehicle communications.However,considering complex channel fading and high-speed vehicle movement,the cer-tainty assumption is impractical and fails to maintain power control strategy in reality in the traditional statical vehicular networks.Rather than the perfect channel state information assumption,the first-order Gauss-Markov process which is a probabilistic model affected by vehicle speed and fading is introduced to describe imperfect channel gains.Moreover,interference management is a major challenge in reusing communications,especially in uncertain channel environments.Power control is an effective way to realize interference management,and optimal power allocation can ensure that interference of the user meets the communication requirements.In this study,the sum-rate-oriented power control scheme and minimum-rate-oriented power control scheme were implemented to manage interference and satisfy different design objectives.Since both of these schemes are non-convex and intractable,the Bernstein approximation and successive convex approximation methods were adopted to transform the original problems into convex ones.Furthermore,a novel distributed robust power control al-gorithm was developed to determine the optimal solutions.The performance of the algorithm was evaluated through numerical simulations,and the results indicate that the proposed algorithm is effective in vehicular communication networks with uncertain channel environments.
基金Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No.60972008). The corresponding author is Jiang Wei.
文摘Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
文摘When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金supported in part by the National Key Research and Development Program of China (2016YFB0800601)
文摘This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.
基金financial support of National Natural Science Foundation of China(NSFC),No.U1705263 and 61971102GF Innovative Research Programthe Sichuan Science and Technology Program,No.2019YJ0194。
文摘In order to satisfy the ever-increasing energy appetite of the massive battery-powered and batteryless communication devices,radio frequency(RF)signals have been relied upon for transferring wireless power to them.The joint coordination of wireless power transfer(WPT)and wireless information transfer(WIT)yields simultaneous wireless information and power transfer(SWIPT)as well as data and energy integrated communication network(DEIN).However,as a promising technique,few efforts are invested in the hardware implementation of DEIN.In order to make DEIN a reality,this paper focuses on hardware implementation of a DEIN.It firstly provides a brief tutorial on SWIPT,while summarising the latest hardware design of WPT transceiver and the existing commercial solutions.Then,a prototype design in DEIN with full protocol stack is elaborated,followed by its performance evaluation.
基金supported in part by the National Natural Science Foundation of China(Grant No.62001265)the Fundamental Research Funds for the Central Universities(Grant No.buctrc202124)。
文摘The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and terrestrial base stations(TBSs)deployed along the coast,and proved that data rate could be improved by optimizing transmit power and ABS’s position.In practice,users on a vessel can be collaboratively served by an ABS and a vesselenabled base station(VBS)in different networks.In this case,how to select the network for users on a vessel is still an open issue.In this paper,a TBS and a satellite respectively provide wireless backhaul for the ABS and the VBS.The network selection is jointly optimized with transmit power of ABS and VBS,and ABS’s position for improving data rate of all users.We solve it by finding candidates for network selection and iteratively solving transmit power and ABS’s position for each candidate.Simulation results demonstrate that data rate can be improved by collaborative coverage for users on a vessel.
文摘Remote access is a means of accessing resources outside one’s immediate physical location. This has made employee mobility more effective and productive for most organizations. Remote access can be achieved via various channels of remote communication, the most common being Virtual Private Networks (VPNs). The demand for remote access is on the rise, especially during the Covid-19 pandemic, and will continue to increase as most organizations are re-structuring to make telecommuting a permanent part of their mode of operation. Employee mobility, while presenting organizations with some advantages, comes with the associated risk of exposing corporate cyber assets to attackers. The remote user and the remote connectivity technology present some vulnerabilities which can be exploited by any threat agent to violate the confidentiality, integrity and availability (CIA) dimensions of these cyber assets. So, how are users and remote devices authenticated? To what extent is the established connection secured? With employee mobility on the rise, it is necessary to analyze the user authentication role since the mobile employee is not under the monitoring radar of the organization, and the environment from which the mobile employee connects may be vulnerable. In this study, an experiment was setup to ascertain the user authentication roles. The experiment showed the process of 2FA in user authentication and it proved to be an effective means of improving user authentication during remote access. This was depicted via the use of what the user has (mobile phone/soft-token) as a second factor in addition to what the user knows, i.e. password. This authentication method overcomes the security weaknesses inherent in single-factor user authentication via the use of password only. However, the results also showed that though 2FA user authentication ensures security, the remote devices could exhibit further vulnerabilities and pose serious risks to the organization. Thus, a varied implementation was recommended to further enhance the security of remote access communication with regards to the remote user authentication.
基金supported by University of Diyala,college of Engineering,department of communications,Diyala,Iraq.
文摘The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a mathematical framework to evaluate the trade-offs of Fog proposal. Specifically, testing the power consumption, delay and energy efficiency in comparison with traditional cloud radio access networks. Although the literature has showed that fog radio access networks provides an enhanced delay performance, this paper shows that an enlarged amount of power is consumed, which degrades the energy efficiency in comparison with traditional cloud counterpart. However, the level of such devolution depends on the number of deployed fog devices that directly influences the power consumption. This paper also shows that enhancing the delay by using fog architecture is not a straight forward process, but requires a particular caring in terms of choosing the appropriate mode while placing/installing fog functions within fog devices.
基金Project supported by the National Natural Science Foundation of China (Grant No.60802019)the Science and Technology Commission of Shanghai Municipality (Grant No.08220510900)
文摘Optimal resource allocation is critical to the efficiency of cooperative communiCations. In this paper, we develop an auction-based power allocation mechanism for network-coded cooperation in wireless networks, in which the sources compete for the relay power for maximum utility, while the relay node assigns the resource in accordance with the bids from the sources. Moreover, to improve the resource utilization, the relay node is allowed to perform network coding across the received information for the same destination. Finally, numerical results validate the performance of the proposed algorithm, and show that there exists a tradeoff between the system outage probability and the power consumed at the relay node.
文摘A multi-antenna multiple relay (MAMR) network is considered and a variation of two-hop zero-forcing amplify-forward relaying method is proposed. Deploying ZF method together with application of diagonal power allocation matrices at the relays, it is shown that the overall MAMR network is simplified to M independent single antenna multiple relay (SAMR) networks, where M is the number of source and destination antennas. This enables to incorporate network beamforming proposed for SAMR networks. Accordingly, using the BER as the performance metric, we present simulation results to show the proposed approach outperforms the common ZF method addressed in the literature.
基金supported by X-Project funded by the Ministry of Science,ICT&Future Planning under Grant No.NRF-2015R1A2A1A16074929
文摘At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).
文摘Integrating the power grid technology with renewable power generation technologies, Demand Response (DR) programs enabled by the Advanced Metering Infrastructure (AMI) were introduced into the power grid in the interest of both utilities and residents. They help to achieve load balance and increase the grid reliability by encouraging residents to reduce their power usage during peak load periods in return for incentives. To automate this process, appliances, in-house sensors, and the AMI controller need to be networked together. In this paper, we compare mainstream network technologies applicable to home appliance control and propose a solution combining Power Line Communication (PLC) with wireless communication in smart homes for the purpose of energy saving. We extended NS-2, a popular network simulator, to model such combined network scenarios. Using a number of different routing strategies, we then model and evaluate the network performance of DR programs in smart homes in such a combined network.
基金supported by the National Science Foundation of China under Grant 62001517in part by the Research Project of Space Engineering University under Grants 2020XXAQ01 and 2019XXAQ05,and in part by the Science and Technology Innovation Cultivation Fund of Space Engineering University.
文摘In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance.