A correlation between metabolic alterations of neuroactive steroids and Alzheimer’s disease remains unknown. In the present study, amyloid beta (Aβ) 25-35 (Aβ25-35) injected into the bilateral campus CA1 region...A correlation between metabolic alterations of neuroactive steroids and Alzheimer’s disease remains unknown. In the present study, amyloid beta (Aβ) 25-35 (Aβ25-35) injected into the bilateral campus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25-35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was signifi-cantly elevated. To our knowledge, this is the first report showing that Aβ25-35, a main etiological factor of Alzheimer’s disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25-35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-αand interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-αand interleukin-1βin a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer’s disease via neuroactive steroids, particularly progesterone.展开更多
基金the Department of Pathophysiology of Hebei Medical University, China for their help
文摘A correlation between metabolic alterations of neuroactive steroids and Alzheimer’s disease remains unknown. In the present study, amyloid beta (Aβ) 25-35 (Aβ25-35) injected into the bilateral campus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25-35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was signifi-cantly elevated. To our knowledge, this is the first report showing that Aβ25-35, a main etiological factor of Alzheimer’s disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25-35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-αand interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-αand interleukin-1βin a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer’s disease via neuroactive steroids, particularly progesterone.