As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment...As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.展开更多
Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,develo...Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,developed by our Institute of Seismology using a new methodological approach for Kazakhstan.The article is about creating the first normative map of the Detailed Seismic Zoning on a probabilistic foundation for the Republic of Kazakhstan’s East Kazakhstan region.We carried out the probabilistic assessment of seismic hazard using a methodology consistent with the main provisions of Eurocode 8and updated compared with that used in developing maps of Kazakhstan’s General Seismic Zoning and seismic microzoning of Almaty.The most thorough and current data accessible for the area under consideration were combined with contemporary analytical techniques.Updates have been done to not only the databases being used but also the way seismic sources were shown,including active faults now.On a scale of 1:1000000,precise seismic zoning maps of the East Kazakhstan region were created for two probabilities of exceedance:10%and 2%in 50 years in terms of peak ground accelerations and macroseismic intensities.The obtained seismic hazard distribution is generally consistent with the General Seismic Zoning of Kazakhstan’s previous findings.However,because active faults were included and a thoroughly revised catalog was used,there are more pronounced zones of increased danger along the fault in the western part of the region.In the west of the territory,acceleration values also increased due to a more accurate consideration of seismotectonic conditions.Zoning maps are the basis for developing new state building regulations of the Republic of Kazakhstan.展开更多
Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic ear...Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.展开更多
Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies a...Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies and appropriate building codes.展开更多
This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of proje...This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.展开更多
China’s coastal areas are densely populated,economically developed, and located in close proximity to several potential tsunami sources;therefore, tsunami risk cannot be ignored. This study assessed tsunami risk in c...China’s coastal areas are densely populated,economically developed, and located in close proximity to several potential tsunami sources;therefore, tsunami risk cannot be ignored. This study assessed tsunami risk in coastal areas of China by developing a framework for tsunami risk assessment from the perspectives of hazards,vulnerability, and exposure. First, a probabilistic tsunami hazard assessment(PTHA) model was applied to estimate the potential tsunami sources in both local crustal faults and circum-Pacific subduction zones based on numerical simulations. The output of the PTHA includes tsunami wave height distributions along the coast. Then, an indicator system reflecting exposure and vulnerability to tsunamis in the coastal areas of China was established by using the entropy method and analytic hierarchy process.The PTHA findings show that the tsunami wave height is close to 3 m on the southern coast of the Bohai Sea, the Pearl River Estuary, and the Yangtze River Delta and exceeds 2 m near the Taiwan Strait for the 2000-year return period. The results of the tsunami risk assessment show that the cities at the highest risk level(level I) include Tangshan, Yantai, and Hong Kong, while cities at the high risk level(level II) include Fuzhou, Xiamen, and Quanzhou near the Taiwan Strait and many cities on the Yangtze River Delta, the Pearl River Estuary, and the southern coast of the Bohai Sea. Our findings can provide an understanding of differences in tsunami risk between Chinese coastal cities that may be affected by tsunamis in the future.展开更多
基金"Development of the Map of General Seismic Zoning in the Territory of the Republic of Kazakhstan" (state registration 0113RK01142)"Development of the map of Seismic Microzoning of the Territory of Almaty City"(state registration 0115RK02701)funded within the state funding
文摘As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article.
基金the“Seismic hazard assessment of the territories of regions and cities of Kazakhstan on a modern scientific and methodological basis”,program code F.0980,IRN OR11465449The funding source is the Ministry of Education and Science of the Republic of Kazakhstan。
文摘Kazakhstan is currently drafting new construction regulations that comply with the major provisions of the Eurocodes.Such regulations are created on the basis of seismic zoning maps of various degrees of detail,developed by our Institute of Seismology using a new methodological approach for Kazakhstan.The article is about creating the first normative map of the Detailed Seismic Zoning on a probabilistic foundation for the Republic of Kazakhstan’s East Kazakhstan region.We carried out the probabilistic assessment of seismic hazard using a methodology consistent with the main provisions of Eurocode 8and updated compared with that used in developing maps of Kazakhstan’s General Seismic Zoning and seismic microzoning of Almaty.The most thorough and current data accessible for the area under consideration were combined with contemporary analytical techniques.Updates have been done to not only the databases being used but also the way seismic sources were shown,including active faults now.On a scale of 1:1000000,precise seismic zoning maps of the East Kazakhstan region were created for two probabilities of exceedance:10%and 2%in 50 years in terms of peak ground accelerations and macroseismic intensities.The obtained seismic hazard distribution is generally consistent with the General Seismic Zoning of Kazakhstan’s previous findings.However,because active faults were included and a thoroughly revised catalog was used,there are more pronounced zones of increased danger along the fault in the western part of the region.In the west of the territory,acceleration values also increased due to a more accurate consideration of seismotectonic conditions.Zoning maps are the basis for developing new state building regulations of the Republic of Kazakhstan.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U2039204)the National Key R&D Program of China(Grant No.2018YFC1504203).
文摘Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones.
基金partially supported by the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(2018VMA0007)
文摘Earthquake is a sudden release of energy due to fault motions.The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment,microzonation studies and appropriate building codes.
基金sponsored by the Specific Fund of Fundamental Research,Institute of Geophysics,China Earthquake Administration (DQJB16B19)
文摘This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.
基金supported by the National Natural Science Foundation of China(Grant No.41771537)the Fundamental Research Funds for the Central Universities。
文摘China’s coastal areas are densely populated,economically developed, and located in close proximity to several potential tsunami sources;therefore, tsunami risk cannot be ignored. This study assessed tsunami risk in coastal areas of China by developing a framework for tsunami risk assessment from the perspectives of hazards,vulnerability, and exposure. First, a probabilistic tsunami hazard assessment(PTHA) model was applied to estimate the potential tsunami sources in both local crustal faults and circum-Pacific subduction zones based on numerical simulations. The output of the PTHA includes tsunami wave height distributions along the coast. Then, an indicator system reflecting exposure and vulnerability to tsunamis in the coastal areas of China was established by using the entropy method and analytic hierarchy process.The PTHA findings show that the tsunami wave height is close to 3 m on the southern coast of the Bohai Sea, the Pearl River Estuary, and the Yangtze River Delta and exceeds 2 m near the Taiwan Strait for the 2000-year return period. The results of the tsunami risk assessment show that the cities at the highest risk level(level I) include Tangshan, Yantai, and Hong Kong, while cities at the high risk level(level II) include Fuzhou, Xiamen, and Quanzhou near the Taiwan Strait and many cities on the Yangtze River Delta, the Pearl River Estuary, and the southern coast of the Bohai Sea. Our findings can provide an understanding of differences in tsunami risk between Chinese coastal cities that may be affected by tsunamis in the future.