在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimat...在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimator,SCMDE)在多目标自动跟踪场景下的杂波密度估计偏差急剧增大。针对以上问题,提出了一种基于SCMDE改进的杂波自适应估计方法,通过计算以待估点为中心的超球体内测量来源于杂波的概率估计超球体内真实的杂波个数,消除超球体内目标测量带来杂波密度估计偏差,从而提升复杂环境下多目标自动跟踪的航迹管理性能。展开更多
文摘在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimator,SCMDE)在多目标自动跟踪场景下的杂波密度估计偏差急剧增大。针对以上问题,提出了一种基于SCMDE改进的杂波自适应估计方法,通过计算以待估点为中心的超球体内测量来源于杂波的概率估计超球体内真实的杂波个数,消除超球体内目标测量带来杂波密度估计偏差,从而提升复杂环境下多目标自动跟踪的航迹管理性能。