Whispered speech enhancement using auditory masking model in modified Mel- domain and Speech Absence Probability (SAP) was proposed. In light of the phonation char- acteristic of whisper, we modify the Mel-frequency...Whispered speech enhancement using auditory masking model in modified Mel- domain and Speech Absence Probability (SAP) was proposed. In light of the phonation char- acteristic of whisper, we modify the Mel-frequency Scaling model. Whispered speech is filtered by the proposed model. Meanwhile, the value of masking threshold for each frequency band is dynamically determined by speech absence probability. Then whispered speech enhancement is conducted by adaptively rectifying the spectrum subtraction coefficients using different masking threshold values. Results of objective and subjective tests on the enhanced whispered signal show that compared with other methods; the proposed method can enhance whispered signal with better subjective auditory quality and less distortion by reducing the music noise and background noise under the masking threshold value.展开更多
Identification of bird species from their sounds has become an important area in biodiversity-related research due to the relative ease of capturing bird sounds in the commonly challenging habitat. Audio features have...Identification of bird species from their sounds has become an important area in biodiversity-related research due to the relative ease of capturing bird sounds in the commonly challenging habitat. Audio features have a massive impact on the classification task since they are the fundamental elements used to differentiate classes. As such, the extraction of informative properties of the data is a crucial stage of any classification-based application. Therefore, it is vital to identify the most significant feature to represent the actual bird sounds. In this paper, we propose a novel feature that can advance classification accuracy with modified features, which are most suitable for classifying birds from its audio sounds. Modified Gammatone frequency cepstral coefficient(GTCC) features have been extracted with their frequency banks adjusted to suit bird sounds. The features are then used to train and test a support vector machine(SVM) classifier. It has been shown that the modified GTCC features are able to give 86% accuracy with twenty Bornean birds. Furthermore, in this paper, we are proposing a novel probability enhanced entropy(PEE) feature, which, when combined with the modified GTCC features, is able to improve accuracy further to 89.5%. These results are significant as the relatively low-resource intensive SVM with the proposed modified GTCC, and the proposed novel PEE feature can be implemented in a real-time system to assist researchers,scientists, conservationists, and even eco-tourists in identifying bird species in the dense forest.展开更多
基金supported by the National Natural Science Foundation of China(61071215)the University Natural Science Research Project of Jiangsu Province(05KJB510113)
文摘Whispered speech enhancement using auditory masking model in modified Mel- domain and Speech Absence Probability (SAP) was proposed. In light of the phonation char- acteristic of whisper, we modify the Mel-frequency Scaling model. Whispered speech is filtered by the proposed model. Meanwhile, the value of masking threshold for each frequency band is dynamically determined by speech absence probability. Then whispered speech enhancement is conducted by adaptively rectifying the spectrum subtraction coefficients using different masking threshold values. Results of objective and subjective tests on the enhanced whispered signal show that compared with other methods; the proposed method can enhance whispered signal with better subjective auditory quality and less distortion by reducing the music noise and background noise under the masking threshold value.
文摘Identification of bird species from their sounds has become an important area in biodiversity-related research due to the relative ease of capturing bird sounds in the commonly challenging habitat. Audio features have a massive impact on the classification task since they are the fundamental elements used to differentiate classes. As such, the extraction of informative properties of the data is a crucial stage of any classification-based application. Therefore, it is vital to identify the most significant feature to represent the actual bird sounds. In this paper, we propose a novel feature that can advance classification accuracy with modified features, which are most suitable for classifying birds from its audio sounds. Modified Gammatone frequency cepstral coefficient(GTCC) features have been extracted with their frequency banks adjusted to suit bird sounds. The features are then used to train and test a support vector machine(SVM) classifier. It has been shown that the modified GTCC features are able to give 86% accuracy with twenty Bornean birds. Furthermore, in this paper, we are proposing a novel probability enhanced entropy(PEE) feature, which, when combined with the modified GTCC features, is able to improve accuracy further to 89.5%. These results are significant as the relatively low-resource intensive SVM with the proposed modified GTCC, and the proposed novel PEE feature can be implemented in a real-time system to assist researchers,scientists, conservationists, and even eco-tourists in identifying bird species in the dense forest.