Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" ...The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.展开更多
In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various discip...In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.展开更多
可靠性灵敏度设计在可靠性设计和修改、可靠性稳健优化设计、可靠性维护等方面均有重要意义。在基于计算截尾概率的Esscher’s近似技术的结构可靠性分析方法基础上,利用对非线性极限状态方程在基本随机变量均值点处做一阶泰勒展开的方法...可靠性灵敏度设计在可靠性设计和修改、可靠性稳健优化设计、可靠性维护等方面均有重要意义。在基于计算截尾概率的Esscher’s近似技术的结构可靠性分析方法基础上,利用对非线性极限状态方程在基本随机变量均值点处做一阶泰勒展开的方法,提出计算具有非线性极限状态的结构失效概率方法即均值一阶Esscher’s近似可靠性设计方法(Mean-value first order Esscher’s approximation,MVFOEA),在此基础上,结合灵敏度分析技术,提出基于均值一阶Esscher’s近似的可靠性灵敏度分析方法。基于Esscher’s近似技术的结构可靠性分析方法要求基本随机变量相互独立,有矩母函数,并且要求极限状态函数具有显式表达式。由于利用基本随机变量全部的概率信息,而不仅仅是前几阶矩,提出的方法与可靠性分析的矩法相比,在计算失效概率时有较高的精度,通过三个数值算例验证了新方法高的计算精度。展开更多
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.
文摘The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.
文摘In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.
文摘可靠性灵敏度设计在可靠性设计和修改、可靠性稳健优化设计、可靠性维护等方面均有重要意义。在基于计算截尾概率的Esscher’s近似技术的结构可靠性分析方法基础上,利用对非线性极限状态方程在基本随机变量均值点处做一阶泰勒展开的方法,提出计算具有非线性极限状态的结构失效概率方法即均值一阶Esscher’s近似可靠性设计方法(Mean-value first order Esscher’s approximation,MVFOEA),在此基础上,结合灵敏度分析技术,提出基于均值一阶Esscher’s近似的可靠性灵敏度分析方法。基于Esscher’s近似技术的结构可靠性分析方法要求基本随机变量相互独立,有矩母函数,并且要求极限状态函数具有显式表达式。由于利用基本随机变量全部的概率信息,而不仅仅是前几阶矩,提出的方法与可靠性分析的矩法相比,在计算失效概率时有较高的精度,通过三个数值算例验证了新方法高的计算精度。