With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is ...The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.展开更多
One of the important fields in statistics is testing hypothesis of correlation coefficient. The extension of the idea of testing correlation to fuzzy hypothesis is of great interesting. In this study, we examined the ...One of the important fields in statistics is testing hypothesis of correlation coefficient. The extension of the idea of testing correlation to fuzzy hypothesis is of great interesting. In this study, we examined the use of fuzzy hypothesis testing approach for the Sequential Probability Ratio Test (SPRT) of correlation coefficient. Use of fuzzy hypothesis testing for correlation coefficient with SPRT is illustrated by an example.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic...In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
基金Supported by the National Natural Science Foundation of China(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999) the Outstanding Young Cultivation Foundation of Henan University(No.0000A40366)
文摘The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.
文摘One of the important fields in statistics is testing hypothesis of correlation coefficient. The extension of the idea of testing correlation to fuzzy hypothesis is of great interesting. In this study, we examined the use of fuzzy hypothesis testing approach for the Sequential Probability Ratio Test (SPRT) of correlation coefficient. Use of fuzzy hypothesis testing for correlation coefficient with SPRT is illustrated by an example.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
文摘In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.