Effects of four different drying methods on the colour, texture, sensory quality, microstructure, bacterial viability and storage stability of probiotic-enriched apple snacks were assessed. The drying methods were air...Effects of four different drying methods on the colour, texture, sensory quality, microstructure, bacterial viability and storage stability of probiotic-enriched apple snacks were assessed. The drying methods were air drying (AD), freeze drying (FD), freeze drying followed by microwave vacuum drying (FD+MVD) and air drying followed by explosion puffing drying (AD+EPD). Overall, FD+MVD can be used as a suitable drying method for the development of probiotic enriched apple snacks in consideration of colour, texture, sensory quality, bacterial viability and storage stability. Probiotic bacteria in FD+MVD-dried samples remained above 1×106 CFU g 1 for 120 days at 25℃C. Interestingly, bacterial viability in FD+MVD-dried samples turned out to be significantly higher than FD-dried samples during storage for 120 days.展开更多
Carboxymethyl cellulose(CMC)/β-glucan(BG)-based films(100:0,75:25,50:50,25:75)were developed and characterized to extend the survivability of Lactobacillus acidophilus LA-5 and establish a shelf life prediction model...Carboxymethyl cellulose(CMC)/β-glucan(BG)-based films(100:0,75:25,50:50,25:75)were developed and characterized to extend the survivability of Lactobacillus acidophilus LA-5 and establish a shelf life prediction model.The incorporation of inulin(IL,2%and 4%)into the CMC matrix was also assessed.Films containing 2%IL and 50%BG were selected to develop probiotic films due to their suitable physicomechanical and barrier properties.Fourier-transform infrared(FT-IR)spectroscopy spectra and scanning electron microscopy(SEM)images showed good compatibility between prebiotics and CMC films matrix.Although tensile strength and water vapor permeability(WVP)of films reduced by prebiotics addition,their oxygen barrier and extensibility were significantly improved.Acceptable viability of probiotic cells was observed in film containing BG;at 4℃(8.3 Log CFU/g),10℃(8.06 Log CFU/g)and 25℃(7.37 Log CFU/g),and under simulated gastrointestinal conditions(7.87 Log CFU/g).This new edible film would be inspiring for future bioactive-loaded packaging.展开更多
基金financially supported by the Key Projects in the Jiangsu Province Key Research & Development Program,China (BE 2016363)
文摘Effects of four different drying methods on the colour, texture, sensory quality, microstructure, bacterial viability and storage stability of probiotic-enriched apple snacks were assessed. The drying methods were air drying (AD), freeze drying (FD), freeze drying followed by microwave vacuum drying (FD+MVD) and air drying followed by explosion puffing drying (AD+EPD). Overall, FD+MVD can be used as a suitable drying method for the development of probiotic enriched apple snacks in consideration of colour, texture, sensory quality, bacterial viability and storage stability. Probiotic bacteria in FD+MVD-dried samples remained above 1×106 CFU g 1 for 120 days at 25℃C. Interestingly, bacterial viability in FD+MVD-dried samples turned out to be significantly higher than FD-dried samples during storage for 120 days.
文摘Carboxymethyl cellulose(CMC)/β-glucan(BG)-based films(100:0,75:25,50:50,25:75)were developed and characterized to extend the survivability of Lactobacillus acidophilus LA-5 and establish a shelf life prediction model.The incorporation of inulin(IL,2%and 4%)into the CMC matrix was also assessed.Films containing 2%IL and 50%BG were selected to develop probiotic films due to their suitable physicomechanical and barrier properties.Fourier-transform infrared(FT-IR)spectroscopy spectra and scanning electron microscopy(SEM)images showed good compatibility between prebiotics and CMC films matrix.Although tensile strength and water vapor permeability(WVP)of films reduced by prebiotics addition,their oxygen barrier and extensibility were significantly improved.Acceptable viability of probiotic cells was observed in film containing BG;at 4℃(8.3 Log CFU/g),10℃(8.06 Log CFU/g)and 25℃(7.37 Log CFU/g),and under simulated gastrointestinal conditions(7.87 Log CFU/g).This new edible film would be inspiring for future bioactive-loaded packaging.