Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M...Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.展开更多
We present our results by using a machine learning(ML)approach for the solution of the Riemann problem for the Euler equations of fluid dynamics.The Riemann problem is an initial-value problem with piecewise-constant ...We present our results by using a machine learning(ML)approach for the solution of the Riemann problem for the Euler equations of fluid dynamics.The Riemann problem is an initial-value problem with piecewise-constant initial data and it represents a mathematical model of the shock tube.The solution of the Riemann problem is the building block for many numerical algorithms in computational fluid dynamics,such as finite-volume or discontinuous Galerkin methods.Therefore,a fast and accurate approximation of the solution of the Riemann problem and construction of the associated numerical fluxes is of crucial importance.The exact solution of the shock tube problem is fully described by the intermediate pressure and mathematically reduces to finding a solution of a nonlinear equation.Prior to delving into the complexities of ML for the Riemann problem,we consider a much simpler formulation,yet very informative,problem of learning roots of quadratic equations based on their coefficients.We compare two approaches:(i)Gaussian process(GP)regressions,and(ii)neural network(NN)approximations.Among these approaches,NNs prove to be more robust and efficient,although GP can be appreciably more accurate(about 30\%).We then use our experience with the quadratic equation to apply the GP and NN approaches to learn the exact solution of the Riemann problem from the initial data or coefficients of the gas equation of state(EOS).We compare GP and NN approximations in both regression and classification analysis and discuss the potential benefits and drawbacks of the ML approach.展开更多
Recently,Problem-Based Learning(PBL)has been regarded as a possible way towards effective educational changes in Chinese universities.However,problems have been exposed in the adoption of PBL,such as choosing effectiv...Recently,Problem-Based Learning(PBL)has been regarded as a possible way towards effective educational changes in Chinese universities.However,problems have been exposed in the adoption of PBL,such as choosing effective PBL problems.The purpose of this paper is to provide a possible solution to the formulation of PBL problems for computer science courses,which is to reimplement open-source projects(ROSP).A case is demonstrated by showing how ROSP was adopted in a practical intercourse-level PBL course module.This paper contributes to a new PBL problem formulation method for promoting PBL in a practical way for Chinese universities.展开更多
Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induce...Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.展开更多
This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructe...This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructed to find the minimum number of Gaussian quadrature points satisfying the given accuracy.The constructed model is trained by using a large amount of data calculated in the traditional boundary element method and the optimal network architecture is selected.The two-dimensional potential problem of a circular structure is tested and analyzed based on the determined model,and the accuracy of the model is about 90%.Finally,by incorporating the predicted Gaussian quadrature points into the boundary element analysis,we find that the numerical solution and the analytical solution are in good agreement,which verifies the robustness of the proposed method.展开更多
基于问题导向式的临床教学模式(problem based learning,PBL)是指通过问题案例或场景使学生确定自己的学习目标,且经由学生自我独立式学习和小组讨论以完善知识。经过60余年的教学实践,在世界许多国家的临床医学教育中都取得了良好的效...基于问题导向式的临床教学模式(problem based learning,PBL)是指通过问题案例或场景使学生确定自己的学习目标,且经由学生自我独立式学习和小组讨论以完善知识。经过60余年的教学实践,在世界许多国家的临床医学教育中都取得了良好的效果,PBL引入我国也有近30年的历史,其在我国临床医学教育的应用中仍然处于探索和改革的阶段。文章就PBL在国内中西医结合临床各科室中的教学现状进行总结,发现其对提高学生积极性,改善学习效果,提高学生的教学满意度等方面效果较好,同时探讨其目前存在的问题,并针对现有的问题提出应对策略,如“靶向PBL教学”模式,以期为未来的医学临床教育提供思路。展开更多
文摘Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.
基金This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396The authors gratefully acknowledge the support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing Program.The Los Alamos unlimited release number is LA-UR-19-32257.
文摘We present our results by using a machine learning(ML)approach for the solution of the Riemann problem for the Euler equations of fluid dynamics.The Riemann problem is an initial-value problem with piecewise-constant initial data and it represents a mathematical model of the shock tube.The solution of the Riemann problem is the building block for many numerical algorithms in computational fluid dynamics,such as finite-volume or discontinuous Galerkin methods.Therefore,a fast and accurate approximation of the solution of the Riemann problem and construction of the associated numerical fluxes is of crucial importance.The exact solution of the shock tube problem is fully described by the intermediate pressure and mathematically reduces to finding a solution of a nonlinear equation.Prior to delving into the complexities of ML for the Riemann problem,we consider a much simpler formulation,yet very informative,problem of learning roots of quadratic equations based on their coefficients.We compare two approaches:(i)Gaussian process(GP)regressions,and(ii)neural network(NN)approximations.Among these approaches,NNs prove to be more robust and efficient,although GP can be appreciably more accurate(about 30\%).We then use our experience with the quadratic equation to apply the GP and NN approaches to learn the exact solution of the Riemann problem from the initial data or coefficients of the gas equation of state(EOS).We compare GP and NN approximations in both regression and classification analysis and discuss the potential benefits and drawbacks of the ML approach.
基金This research was financially supported by the PBL Research and Application Project of Northeastern University(Grant No.PBL-JX2021yb029,PBL-JX2021yb027).
文摘Recently,Problem-Based Learning(PBL)has been regarded as a possible way towards effective educational changes in Chinese universities.However,problems have been exposed in the adoption of PBL,such as choosing effective PBL problems.The purpose of this paper is to provide a possible solution to the formulation of PBL problems for computer science courses,which is to reimplement open-source projects(ROSP).A case is demonstrated by showing how ROSP was adopted in a practical intercourse-level PBL course module.This paper contributes to a new PBL problem formulation method for promoting PBL in a practical way for Chinese universities.
基金National Natural Science Foundation of China (12002075)National Key Research and Development Project (2021YFB3300601)Natural Science Foundation of Liaoning Province in China (2021-MS-128).
文摘Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues.The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing.To address this issue,we propose a deep learning(DL)model based on conditional Generative Adversarial Networks(cGANs)to improve the quality of nonhomogeneous shear modulus reconstruction.To train this model,we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution.Both the simulated and experimental displacement fields are used to validate the proposed method.The reconstructed results demonstrate that the DL model with synthetic training data is able to improve the quality of the reconstruction compared with the well-established optimization method.Moreover,we emphasize that our DL model is only trained on synthetic data.This might provide a way to alleviate the challenge of obtaining clinical or experimental data in elastography.Overall,this work addresses several fatal issues in applying the DL technique into elastography,and the proposed method has shown great potential in improving the accuracy of the disease diagnosis in clinical medicine.
基金The authors thank the financial support of National Natural Science Foundation of China(NSFC)under Grant(No.11702238).
文摘This paper applies a machine learning technique to find a general and efficient numerical integration scheme for boundary element methods.A model based on the neural network multi-classification algorithmis constructed to find the minimum number of Gaussian quadrature points satisfying the given accuracy.The constructed model is trained by using a large amount of data calculated in the traditional boundary element method and the optimal network architecture is selected.The two-dimensional potential problem of a circular structure is tested and analyzed based on the determined model,and the accuracy of the model is about 90%.Finally,by incorporating the predicted Gaussian quadrature points into the boundary element analysis,we find that the numerical solution and the analytical solution are in good agreement,which verifies the robustness of the proposed method.
文摘基于问题导向式的临床教学模式(problem based learning,PBL)是指通过问题案例或场景使学生确定自己的学习目标,且经由学生自我独立式学习和小组讨论以完善知识。经过60余年的教学实践,在世界许多国家的临床医学教育中都取得了良好的效果,PBL引入我国也有近30年的历史,其在我国临床医学教育的应用中仍然处于探索和改革的阶段。文章就PBL在国内中西医结合临床各科室中的教学现状进行总结,发现其对提高学生积极性,改善学习效果,提高学生的教学满意度等方面效果较好,同时探讨其目前存在的问题,并针对现有的问题提出应对策略,如“靶向PBL教学”模式,以期为未来的医学临床教育提供思路。